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Abstract

A dual interpolation boundary face method (DiBFM) is presented for solving three-dimensional

potential problems. The DiBFM is an alternative implementation of the boundary face method (BFM)

and inherits all the merits of BFM, which has been proposed to unify the continuous and

discontinuous elements, improve the accuracy of the interpolation calculation and alleviate the heavy

task of mesh generation. The DiBFM implementation is based on a new type of elements, called the

dual interpolation elements, in which the nodes are classified into virtual nodes and source nodes.

Despite the introduction of virtual nodes in the dual interpolation elements, only source nodes of

each element are taken as the collocation points. Corresponding constraint equations using the MLS

approximation are formulated to condense the degrees of freedom for all virtual nodes, which does

not result in the scale of final linear system increasing. In addition, even with some irregular

elements in numerical simulation, accurate results and high convergence rates can be achieved by the

DiBFM. The DiBFM is flexible and convenient to handle more complicated, real world structures

without any geometric simplification in a fully automated manner. Numerical results have

demonstrated the validity, high accuracy and superior convergence of the proposed method.

Key words: potential problems; Dual interpolation; boundary face method; boundary element

method; moving least-squares approximation.

1. Introduction

Boundary integral formulations [1] are attractive computational techniques for linear and exterior

problems as they can reduce the dimensionality of the original problem by one. With the distinct



feature that only the boundary of the problem is required to be discretized into elements, the

boundary element method (BEM) has been developed rapidly to such a level that it has been widely

applied to solve very complicated engineering problems, such as potential problems [2-4],

elastostatic problems [5], contact problems [6,7], fracture mechanics problems [8-10] and acoustics

problems [11,12]. Since only the surface requires discretization in BEM, the mesh generation process

is not as intensive compared to the finite element method (FEM). Note that the trial functions are

required to maintain at least 0C continuity as well as the connectivity requirements of the resulting

mesh in FEM, which is not required for the BEM. One of the remarkable features between BEM and

FEM is that both continuous and discontinuous elements can be applied in BEM. In addition, a key

difficulty in FEM is to achieve the connectivity requirements of the desirable mesh [13], such as

all-hexahedral mesh, which causes a large amount of work for automatic meshing. And for complex

geometries, mesh generation can still be a bottleneck in BEM.

Meshless methods [14] were born with the objective of eliminating part of the difficulties

associated with reliance on a mesh to construct the approximation. In recent years, a few different

meshless boundary type meshless techniques combined with boundary integral equations (BIEs)

have been developed and achieved remarkable progress in BEM, such as the hybrid boundary node

method (HBNM) [15], the regular hybrid boundary node method (RHBNM) [16], the backward

substitution method (BSM) [17]. the novel singular boundary method (NSBM) [18], the localized

radial basis function collocation method (LRBFCM) [19], and so forth. The FEM also has made

great achievements in practical application, but some limitations or drawbacks still exist in the

conventional FEM formulation. In the efforts to improve the performance of standard FEM, the

smoothed finite element method (S-FEM) has effectively addresses the weaknesses of FEM through

the use of some meshfree concepts and techniques. To deal with the locking phenomena in FEM,

various successful locking free methods have been developed and implemented. The edge-based

smoothed finite element methods (ES-FEM) with a phantom-node method [20] has been successfully

implemented in 2D linear elastic fracture mechanics. Nguyen-Xuan et al. [21] proposed a bubble

enriched smoothed finite element method called the bES-FEM in 2D and bFS-FEM in 3D, which

contribute to soften the bilinear form allowing the weakened weak ( 2W ) form to yield more accurate

simulation results. Strain smoothing approaches were developed to avoid volumetric locking for



compressible or nearly incompressible linear elasticity problems [22]. Recently, Natarajan et al. [23]

illustrated the connection between the virtual element method and the S-FEM theoretically and

numerically. A linear smoothing scheme for linear and quadratic arbitrary convex polytopes was

presented in detail [24]. S. Chakraborty et al. [25] proposed an optimal numerical integration scheme

to improve the accuracy and convergence of a family of polygonal finite elements with

Schwarz–Christoffel conformal mapping.

Various numerical methods to establish a natural link between CAD and CAE based on boundary

representations have always been attracted much attention in BEM and FEM, such as the

geometry-independent field approximation (GIFT) [26], the scaled boundary finite element method

(SBFEM) [27] and the isogeometric boundary element method (IGASBFEM) [28]. The GIFT is a

generalisation of isogeometric analysis (IGA), which allows adaptive local refinement of the solution

field and establishes a tight integration between CAD and the CAE analysis. In the conventional IGA,

the surfaces/volumes are represented by the tensor product structure of the NURBS. This requires the

domain to be discretized with standard shapes and leads to a restricted number of boundary

curves/surfaces. Also, this leads to excessive overhead of control points with refinement [28]. In the

GIFT implementation, the geometry parameterization and solution approximation are based on the

same shape functions spaces of NURBS, PHT-splines, and B-splines. The SBFEM is a novel

semi-analytical technique, combining the advantages of the BEM and the FEM with unique

properties of its own. It is worth mentioning that the SBFEM is implemented by the scaled boundary

coordinate system; that is, the geometry of the domain should be transformed from the Cartesian

coordinates to the scaled boundary coordinates, viz., circumferential and radial direction. Combined

with IGA, a novel method named the IGASBFEM is developed within the framework of the SBFEM,

which is employed the NURBS basis functions to approximate the unknown felds in the

circumferential direction.

Taking the two basic ways of the BEM implementation, i.e. using continuous and discontinuous

elements, we first discuss the benefits and drawbacks of these two type elements [29,30]. The first

way is using the continuous elements, in which the collocation nodes coincide with the geometric

vertices of elements. In terms of the properties of the shape functions of continuous elements, the

interelement continuity of field variables and the continuity of the fields between the elements can be

basically ensured. Nevertheless, it is tricky for the standard continuous elements to handle the corner



problems [31]. Besides, the continuous elements cannot meet the requirements of continuity and

differentiability at the source node, which is not suitable for evaluation of the hypersingular integrals

[32]. With the discontinuous elements, it is able to overcome the above weakness of continuous

elements naturally. Beyond that, discontinuous elements have some other attractive advantages,

including the simplification in the assembly and solution of the system matrix and greatly alleviating

he heavy task of mesh generation. But in comparison with the continuous elements, the degrees of

freedom increases rapidly when using the discontinuous elements with the same accuracy, which

means much more computer resources are required. How to take full advantages of continuous and

discontinuous elements has been a long-standing debate in the BEM community.

The dual interpolation boundary face method (DiBFM) [33] is an alternative implementation of

the boundary face method (BFM) [34] and inherits all the merits of BFM, which has been proposed

to unify the continuous and discontinuous elements, improve the accuracy of the interpolation

calculation and alleviate the heavy task of mesh generation. The DiBFM has been successfully

applied to elastostatic problems [35], contact problems [36] in two dimensions. The DiBFM

implementation is based on a new type of elements, called the dual interpolation elements, in which

the nodes are classified into virtual nodes and source nodes. Despite the introduction of virtual nodes,

only source nodes of each element are taken as the collocation points. Corresponding constraint

equations using the MLS approximation [37] are formulated to condense the degrees of freedom for

all virtual nodes, which does not result in the scale of final linear system increasing. In addition, the

geometry representation of the boundary faces of domain is exactly the same as the original B-rep

data structure in standard solid modeling packages. Both the MLS approximation and boundary

integration are performed in the parametric spaces of the faces. The geometric variables for the

DiBFM implementation, such as out normal, Jacobians and etc, are implemented directly on the

original CAD model rather than an elaborately built discretized model, which is different from the

real model not only in geometry and topology, but also in representation data structure. Thus, a truly

seamless interaction between CAD and CAE can be successfully achieved.



Fig. 1. Boundary discretization using quadratic elements: (a) continuous elements,

(b) discontinuous elements, (c) dual interpolation elements.

An important topic in the computational field of BEM and FEM is to reduce the sensitivity of

analysis results to the mesh distortions. Distorted meshes are often unavoidable in automatic mesh

generation for complex geometries, which may produce discretizations with inferior approximation

properties. An immediate consequence of mesh distortion is leading to inaccurate or even invalid

computational analyses. Even with some distorted elements in numerical analysis, the DiBFM

exhibits high performance of accuracy and convergence. Another attractive key innovation of the

DiBFM is the alleviation of heavy task of mesh generation. A broad consensus has emerged that in

the specific domain of high performance computing, automatic mesh generation is very difficult and

time consuming for complex geometries. With the distinct property that both continuous and

discontinuous elements can be applied in BFM, the DiBFM is a special and efficient method for

solving three-dimensional (3-D) problems through the use of discontinuous grids. In order to meet

the connectivity requirements of the resulting mesh in FEM, many researchers have done a great deal

of work to deal with the disgusting hanging points in mesh generation, such as the grid-based method,

octree-based algorithm, meshing techniques of splitting or insertion, and etc [38]. However, the

undesirable effect of hanging points can be avoided by the DiBFM implementation. Discontinuous

grids also can provide more convenience for mesh generation without considering the hanging points

for its simplicity in dealing with complex geometries. This is a potential advantage of the DiBFM in

the future work.

This paper is organized as follows. Section 2 describes the parameter mapping scheme based on



the surface element for 3-D problems. Detailed description of the dual interpolation method for 3-D

potential problems is presented in Section 3. Section 4 demonstrates the governing equations, the

boundary integral formulations of the DiBFM for 3-D potential problems. Numerical examples for

3-D potential problems are given in Section 5. Section 6 summarizes.

2. The approximation scheme in parametric space

One of the distinguishing features between DiBFM and BEM is that physical variables are

implemented directly on the bounding surfaces rather than from elements in DiBFM. Both the dual

interpolation and boundary integration in the DiBFM implementation are performed in the parameter

space of each surface.

And a surface has a parametric representation of the form

( , , ) ( ( , ), ( , ), ( , )) ( , )r r rx y z x u v y u v z u v u v  (1)

where r is the position vector, u , v are the parametric coordinates of each surface. It is assumed

that S , S denote the surface in parametric and Euclidean space, respectively, and a geometric map

:F S S can be created. Based on the geometric map F , the shape functions are constructed in

the parameter space S .

Fig.2. Four-node surface element: (a) quadrilateral element in parameter space and (b) coordinate mapping.

To illustrate the approximation scheme, a graphical illustration of the linear quadrilateral element

in the parameter space S for approximation is presented in Fig.2. Corresponding interpolation

functions of each node for the linear quadrilateral element are given by
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Considering the linear quadrilateral element, the coordinates ( , )u v defined on the parameter

space of each surface are interpolated by Eq. (3). The subsequent geometric data in Euclidean space

at ( , )u v can be calculated directly from the bounding surfaces, which makes a truly seamless

interaction between CAD and CAE successfully achieved without any geometric simplification.

4 4

1 1

,    i i i i
i i

u N u v N v
 

   (3)

where ( , )  is the usual local parametric coordinate defined on the quadrilateral surface element,

( , )i iu v denotes the parametric coordinates of each node of the element.

3. Dual interpolation method for potential problems

This section introduces the details of the dual interpolation method for 3-D potential problems.

The notion of dual interpolation elements in the DiBFM is introduced in Section 3.1. This concept is

used in the first-layer interpolation to interpolate the physical variables in Section 3.2 and in the

second-layer interpolation to condense the degrees of freedom of virtual nodes in Section 3.3.

3.1 Dual interpolation element

Fig. 3. dual interpolation triangle elements for 3-D problems: (a) TS1, (b) TS3, and (c) TS6.



Fig. 4. dual interpolation quadrilateral elements for 3-D problems: (a) QS1, (b) QS4, and (c) QS9.

In the DiBFM implementation, we introduce a new type of elements, called the dual interpolation

elements. The dual interpolation elements are able to unify the conventional continuous and

discontinuous elements. The dual interpolation elements are divided into different element types

according to the order of element. As shown in Fig.3 and Fig.4, corresponding dual interpolation

triangle elements (TS1, TS3 and TS6) and quadrilateral elements (QS1, QS4 and QS9) are a constant,

linear, and quadratic element, respectively. The dual interpolation elements with the notation TS1,

TS3, TS6 and QS1, QS4, QS9 denote the number of source nodes in a triangle or quadrilateral

element. The shape functions for the constant dual interpolation elements TS1 in Fig.3(a) and QS1 in

Fig.4(a) are provided in Eq. (4) and Eq. (5), respectively. Similarly, the shape functions for other dual

interpolation triangle elements (TS3, TS6) and quadrilateral elements (QS4 and QS9) can be

formulated in the same way as the standard elements of FEM or BEM on the basis of the scraping

line method.

Fig. 5. Local parametric coordinates in the dual interpolation element: (a) TS1 and (b) QS1.



The shape functions for the dual interpolation element TS1
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where  , represent the natural coordinates defined on a triangle element, i.e. , [0,1]   .

The shape functions for the dual interpolation element QS1
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(5)

where  , represent the natural coordinates defined on a quadrilateral element, i.e. , [ 1,1]    .

As is illustrated in Fig.3 and Fig.4, the red solid nodes inside the dual interpolation elements are

marked as source nodes. The red hollow nodes on the boundary of the dual interpolation elements

denote virtual nodes. Considering both source nodes and virtual nodes, the dual interpolation element

is the same as a standard continuous element. Without taking into virtual nodes consideration, the

dual interpolation element is equivalent to a standard discontinuous element. The order of

interpolation function of the dual interpolation elements is increased at least by two orders compared

with the conventional elements using the source nodes alone. As has been demonstrated numerically

in Ref. [33], the dual interpolation elements exhibit higher accuracy and more superior convergence

behavior than the conventional discontinuous elements. In addition, numerical results have

demonstrated that the DiBFM is less sensitive to the quality of mesh generation. Even with some

very irregular elements in the process of mesh generation, the DiBFM still has the ability to exhibit

high accuracy and superior convergence behavior (see the second numerical example in Section 5 for

details).

3.2 The first-layer interpolation

The boundary physical variables are interpolated by the first-layer interpolation in DiBFM, which

is similar to the interpolation using the conventional continuous elements. The main difference



between them is that the shape functions of a dual interpolation element are drived by both source

nodes and virtual nodes. For 3-D potential problems, the unknown quantities, i.e. the potential u

and the normal flux q , at any point ( , )  in interpolating are evaluated by

1 1

( , ) ( , ) ( ) ( , ) ( )
nn

s s v vu N u Q N u Q


   
 
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 

   , (6)

1 1

( , ) ( , ) ( ) ( , ) ( )
nn

s s v vq N q Q N q Q


   
 
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 

   , (7)

where the superscripts s and v represent the source and virtual nodes, respectively. The subscripts

 ,  represent the th source and th virtual node in a dual interpolation element, respectively.

n and n denote the number of source nodes and virtual nodes in a dual interpolation element,

respectively. ( , )sN   and ( , )vN   are the shape functions for source nodes and virtual nodes,

respectively. Note that the virtual nodal parameters ( )vu Q and ( )vq Q are not independent

variables, which are interpolated by the second-layer interpolation in DiBFM.
3.3 The second-layer interpolation

Corresponding constraint equations using the MLS approximation are required to be formulated to

condense the degrees of freedom for all virtual nodes in the second-layer interpolation. Besides, both

continuous and discontinuous fields can be well approximated by determining the range of influence

of an evaluating virtual node in MLS.

3.3.1. The moving least square approximation

Since all nodes of elements covered on the boundary  of a 3-D domain  , the MLS

approximation is calculated on the bounding surfaces directly. The MLS approximation is used to

formulate relevant constraint equations between source nodes and virtual nodes. It should be noted

that it is not necessary to evaluate the shape functions at each Gaussian point during the boundary

integration.

Given a virtual node ( , )v v vQ    , the MLS interpolants u and q are defined as

1

ˆ( ) ( , ) ( )
M

v s v v s
j j

j

u Q u Q   


  , (8)



1

ˆ( ) ( , ) ( )
M

v s v v s
j j

j

q Q q Q   


  , (9)

where points s
jQ are the source nodes on the boundary  , M is the number of source nodes in

the vicinity of vQ for which the weight functions ( , ) 0v s
jw Q Q  . It should be noted here that

ˆ( )sju Q and ˆ( )sjq Q used in Eqs. (8) and (9) are the fictitious nodal values, which are not equal to the

nodal values ( )sju Q and ( )sjq Q in general. ( , )s v v
j    is the shape function of MLS

approximation relating to the source node s
jQ , which can be expressed as

T 1( , ) ( , )[ ( , ) ( , )]p A Bs v v v v v v v v
j kj                (10)

For the shape functions of MLS approximation relating to all source nodes, which can be expressed

as

 1 2

T 1

, , , , ,

( , ) ( , ) ( , )

Φ

p A B

s s s s
j M

     

    



 
(10)

with matrices T ( , )p   , ( , )A   and ( , )B   defined by

T 2 2[1, , , , , ], 6p           m     

1

( , ) ( , ) ( , )A p p
M

T
j j j j j

j
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



 1 1 1 2 2 2( , ) ( , ), ( , ), , ( , )B p  p    pM M Mw w w        

where jw is the weight function corresponding to a node ( , )j j  . The ( , )s v v
j    is usually

called the shape function of the MLS approximation corresponding to the source node s
jQ .

The source nodes determined in the range of influence of the weight functions relating to an

evaluating virtual node in MLS are obtained by searching several layer elements in the vicinity of the

virtual node, rather than searching all source nodes on the boundary  of domain, as is shown in

Fig.6. More details of the MLS approximation are available in [37].



Fig. 6. The range of influence of an interested virtual node vQ .

3.3.2. Approximation of continuous and discontinuous fields

By determining the range of influence of the weight functions corresponding to an evaluating

virtual node in MLS, both continuous and discontinuous fields can be naturally and accurately

approximated. To illustrate the particular feature of DiBFM, it will be explained by a schematic

description for the continuous or discontinuous function approximation, as illustrated in Fig.7.

Fig. 7. Approximation of the continuous or discontinuous fields

For approximation of the continuous fields, only one virtual node v is distributed at the points of

elements. When determining the range of influence of the weight functions in MLS, all source nodes

in the vicinity of an evaluating virtual node are considered as valid nodes involved in computation.



For approximation of the discontinuous fields, multiple virtual nodes are distributed at the

discontinuous boundary, such as geometric corners, non-smooth geometric boundary edges or

element nodes at which the field is discontinuous. As depicted in Fig.7, two same co-ordinates virtual

nodes 0v and 1v are placed on the non-smooth geometric boundary edge. These two virtual nodes

lie on different boundary faces, one for each of the two adjacent faces, which making all boundary

elements mutually independent and naturally for approximation of the discontinuous fields. When

determining the range of influence of the weight functions in MLS for approximation of the

discontinuous field at the virtual node vQ , the virtual node
v

Q is considered as a opaque node,

namely, the source nodes of elements lying on other boundary faces beyond the opaque virtual node

are not included. The range of influence of the virtual node 0v covers the nine blue source nodes

only, while the nine red source nodes are merely covered in the range of influence of the virtual node

1v .

In summary, the DiBFM presented in this section has several interesting properties.

(i) The dual interpolation elements exhibit higher accuracy and more superior convergence behavior

than the conventional discontinuous elements.

(ii) Despite the introduction of virtual nodes in the dual interpolation elements, only source nodes of

each element are taken as the collocation points. With the second-layer interpolation, the DiBFM

does not result in the scale of final linear system increasing.

(iii) The dual interpolation elements have the ability to unify the conventional continuous and

discontinuous elements, which can be able to well approximate both continuous and discontinuous

fields.

(iV) Even with some irregular elements in numerical simulation, accurate numerical results and high

convergence rates can be achieved by the DiBFM.

(V) In the DiBFM implementation, the geometric variables are calculated directly from the bounding

surfaces rather than from elements, which makes a truly seamless interaction between CAD and

CAE successfully achieved without any geometric simplification. The DiBFM could be an essential

step for solving real world geometries in a fully automated manner based on this competitive

advantage.



4. DiBFM for three-dimensional potential problem

4.1 Boundary-integral formulation

Consider an arbitrary 3-D domain  , as illustrated in Fig. 8, on which the potential problem

governed by Laplace's equation with boundary conditions is given by (see e.g. [1] for details)
2 0 ,

,

,

         

             

    

u

q

u

u u
uq q
n

   

  


   


x

x

x

(11)

where u is the essential boundary, q is the flux boundary, u and q are prescribed Dirichlet

and Neumann boundary conditions on u and q , respectively, and n is the outward normal

vector.

Fig. 8. An arbitrary domain on which the potential equation is to be solved.

The boundary integral equation (BIE) for three-dimensional potential problem is written as

( , )( ) ( ) ( , ) ( ) ( ) , ,
( )

G P Qc P u P G P Q q Q d u Q d P Q
n Q 


    

  (12)

where the coefficient ( )c P is expressed as

 1        in the interior region of 
( ) 0.5      on the boundary 

 0        in the exterior region of 

P
c P P

P


 
 

(13)

and P is the source point, Q is the field point, the Green's function ( , )G P Q is the fundamental

solutions. For three-dimensional potential problems, the Green's function is given by

1 1( , )
4 ( , )

G P Q
r P Q

  , (14)

u
q 



with ( , )r P Q being the distance between P and Q in three dimensions.

4.2 Discretization of the BIE for potential problems

In the DiBFM, the boundary of domain is discretized into the dual interpolation elements. For

three-dimensional potential problems, the discretization form of the BIE of Eq. (12) can be written as

1 1 1 1 1 1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
n nne n ne n

ss s sv v ss s sv v
ij i j ij i j ij i j ij i j

j j
h P u Q h P u Q g P q Q g P q Q
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   
        

   
     

   
      , (15)

in which the entries of the coefficients in Eq. (15) are given by

( )
( , ) 1( ) ( ) ( )
( ) 2j

ss s
ij j ij

G P Qh P N Q d Q
n Q


 




  

 , (16)

( )
( , )( ) ( ) ( )
( )j

sv v
ij j

G P Qh P N Q d Q
n Q 


 

 , (17)

( )( ) ( , ) ( ) ( )
j

ss s
ij jg P G P Q N Q d Q

  , (18)

( )( ) ( , ) ( ) ( )
j

sv v
ij jg P G P Q N Q d Q

  , (19)

and

th th1,    if source node  is located at the  source node in the  element
0,ij

P j 



 


, (20)

where ne , NS and NP denote the total number of elements, source nodes and field nodes on the

boundary of domain, respectively. ( ) ( )s
jN Q , ( ) ( )v

jN Q denote the shape functions for th source

node and th virtual node of the thj dual interpolation element, respectively.

Eq. (15) can be rewritten in a matrix form as

Hu Gq , (21)

where H and G are NS NP coefficient matrices, u and q are 1NP potential and its

normal derivative vector, respectively.

To facilitate the derivation procedure, the coefficient matrices H and G in Eq. (21) are

decomposed as



s
d
s

ss ss ss sv sv sv ss ss ss sv sv svr
dd dr dn dd dr dn dd dr dn dd dr dns
ss ss ss sv sv sv ss ss ss sv svn
rd rr rn rd rr rn rd rr rn rd rr rv
ss ss ss sv sv sv d
nd nr nn nd nr nn v

r
v
n

 
 
  
      
    
 
  

u
u

H H H H H H G G G G G G
u

H H H H H H G G G G G G
u

H H H H H H
u
u





s
d
s
r
s

sv n
n v

ss ss ss sv sv sv d
nd nr nn nd nr nn v

r
v
n

 
 
  
   
  
    
 
  

q
q
q
q

G G G G G G
q
q





(22)

where the subscripts d, n and r of the submatrices of H and G denote the Dirichlet, Neumann and

Robin boundary conditions, respectively. u and q are the described potential and normal flux

vectors, respectively.

4.3 Condensation of degrees of freedom for virtual nodes

Since the boundary integral equations in DiBFM are collocated at the source nodes only, the

number of unknown nodal values is more than the number of equations (see Eq. (22)).

The constraint equations of the degrees of freedom for all virtual nodes should be constructed, which

are used to add the number of equations and make them be equal. If the virtual nodes are imposed the

boundary conditions, the boundary variables at these nodes can be obtained directly. The unknown

potential in uv and normal flux qv of virtual nodes can be approximated by the second-layer

interpolation. The matrix forms of uv and qv are expressed as

u Ψ Ψ u u
Ψ

u Ψ Ψ u u

v vs vs s s
vsr rr rn r r

v vs vs s s
n nr nn n n

       
       

       

  
(23)

q Θ qv vs s
d dd d (24)

where Ψvs
rr , Ψvs

rn , Ψvs
nr , Ψvs

nn and Θvs
dd are shape function matrices of the second-layer interpolation,

which are constructed by the MLS approximation, as is mentioned in Section 3.3.

The degrees of freedom for v
rq can be condensed using the Robin boundary condition

q β α uv v v v
r r r r   , (25)

and substituting Eq. (25) into Eq. (22) , gives



u
u

H H H H H G α H G G G G G
u

H H H H H G α H G
u

H H H H H G α H
u
u

s
d
s

ss ss ss sv sv sv v sv ss ss ss sv svr
dd dr dn dd dr dr r dn dd dr dn dd dns
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r
v
n

 
 
  
       
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 
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



q
Gq

G G G G G βq
G G G G G Gq

q

s
d

svs
drr

ss ss sv sv sv vs
rr rn rd rn rr rn

ss ss ss sv sv svv
nd nr nn nd nn nrd

v
n

 
             
        
  



, (26)

Substituting the approximations for v
ru ,uv

n and qv
d into Eq. (26) using Eqs. (23) and (24).

u q
H H H H G G G G G

u q
H H H H G G G G

u q
H H H H G G G G

u q

s s
ss ss ss sv ss ss ss sv sd d
dd dr dn dd dd dr dn dn drs s
ss ss ss sv ss ss ss svr r
rd rr rn rd rd rr rn rns s
ss ss ss sv ss ss ss svn n
nd nr nn nd nd nr nn nnv v

d n

   
      
             

               


G β
G

v

sv v
rr r
sv
nr

 
 
 
  

, (27)

in which

H H H H H H H G α H
Ψ Ψ

H H H H H H H G α H
Ψ Ψ

H H H H H H H G α H

ss ss ss ss ss ss sv sv v sv
dd dr dn dd dr dn dr dr r dn vs vs
ss ss ss ss ss ss sv sv v sv rr rn
rd rr rn rd rr rn rr rr r rn vs vs
ss ss ss ss ss ss sv sv v sv nr nn
nd nr nn nd nr nn nr nr r nn

     
            

          


 
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G G G G G G G
G G G G G G G Θ
G G G G G G G

ss ss sv ss ss sv sv
dd dn dn dd dn dn dd
ss ss sv ss ss sv sv vs
rd rn rn rd rn rn rd dd
ss ss sv ss ss sv sv
nd nn nn nd nn nn nd

     
           

         
, (29)

Substituting the described boundary conditions uv
d and qv

n of virtual nodes into Eq. (27).

H H H u G G G q H G
u

H H H u G G G q H G
q

H H H u G G G q H G

ss ss ss s ss ss ss s sv sv
dd dr dn d dd dr dn d dd dn v
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rd rr rn r rd rr rn r rd rn
ss ss ss s ss ss ss s sv sv n
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G
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      
    

, (30)

Similarly, applying the Robin boundary condition q β α us s s s
r r r r   into Eq. (30), we can obtain

    
qH H G α H u G G G H G

H H G α H u G G G H Gβ
H H G α H u G G G q
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ddd dr dr r dn d dd dr dn dd dn
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, (31)

4.4 Solution for potential problems

The final linear system for potential problems derived from Eq. (31) can be expressed as

Ax b , (32)

in which
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u
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,

where A is the NS NS coefficient matrix, x is the unknown 1NS  potential and its normal

derivative of all source nodes vector, b is a known right-hand-side vector.

Using the LU decomposition to solve Eq. (32), the unknown potential and its normal derivative of

all source nodes can be computed on each dual interpolation element. By using the dual interpolation

elements, high accuracy and superior convergence can be affirmitived in DiBFM. It is worth to note

that the scale of final linear system in DiBFM is equivalent to that in the conventional discontinuous

element implementation.

5. Numerical examples

In this section, three numerical examples are given to demonstrate the accuracy and efficiency of

the DiBFM for solving 3-D potential problems. The first example is given to demonstrate the

accuracy and convergence rate of the DiBFM. The calculational results of other two examples are

used to verify the availability that the DiBFM can be applied to complex geometries. Three examples

with different boundary conditions are presented. Unless otherwise mentioned, mq denotes the

modulus of the vector ( , , )x y zq q q , i.e. 2 2 2
m x y zq q q q   . The convergence of the method is

measured by the relative error measure.

( ) ( ) 2

1max

1 1 [ ]
N

e n
i i

i

e v v
v N 

  , (33)

H1-norm: ( ) ( )

1

1 N
e n
i i

i
e v v

N 

 

L2-norm: ( ) ( ) 2

1

1 [ ]
N

e n
i i

i

e v v
N 

 



where
max
v is the maximum value of potential iu or normal flux iq over N sample points, and

the superscripts (e) and (n) denote the exact and numerical solutions, respectively.

5.1 Mixed problems on a cube

The first example is a mixed problem on a cube with cubic polynomial solution for u . Consider

the solution of a Laplace’s equation on a cube that is bounded by the surfaces 1x   , 1y   and

1z   . Eq. (34) is used as the exact solution. Corresponding to the exact solution, a mixed problem

is solved for which the essential boundary condition is imposed on faces 1z   , and the natural

boundary condition on faces 1x   and 1y   .

(a) (b)

Fig. 9. A mixed problem on a cube: (a) geometry and boundary conditions of a cube,

(b) distribution of the sample points on the diagonal of faces for u and mq .

The potential boundary conditions are

3 3 3 2 2 23 3 3 .u x y z x y y z z x      (34)

This example is presented to verify the accuracy and convergence performance of the DiBFM. To

study the convergence of the DiBFM, a mixed problem on a cube has been tested through the dual

interpolation element QS1 and TS1, respectively. This problem is solved by the DiBFM with 16, 100,

400 and 1600 quadrilateral elements per face, and 22, 102, 405 and 1610 triangular elements per face

to study the convergence behavior. Nodes are uniformly distributed on the boundary of the domain.

The numerical results have been obtained for various locations of the collocation points on the



boundary of the cube. A comparison of convergence of the DiBFM with the interpolation elements

QS1 and TS1 (denoted by DiBFM QS1 and DiBFM TS1, respectively) is shown in Fig. 10 and Fig.11.

The 2L errors of nodal values presented in Table 1 for u (denoted by _Err u ) and mq (denoted

by _ mErr q ) are evaluated by Eq. (33) with different number of source nodes and different types of

the constant dual interpolation elements. The results of the DiBFM with totally 600 QS1 elements

and 610 TS1 elements are shown in Fig. 12 and Fig. 13. Comparison of the accuracy of the dual

interpolation elements QS1 and TS1 for u (see Fig. 12) are evaluated over 200 sample points

uniformly distributed from (1, -1, 1) to (1, 1, -1). The numerical results of mq is shown in Fig. 13

employing a uniform distribution of same sample points along a straight line from (-1, -1, 1) to (1, 1,

1).
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Table 1 Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution.

DiBFM QS1 DiBFM TS1

NS _Err u _ mErr q NS _Err u _ mErr q

96 7.59E-03 1.96E-02 132 6.98E-03 2.51E-02

600 3.23E-04 2.23E-03 612 3.83E-04 3.69E-03

2400 3.02E-05 4.22E-04 2430 6.46E-05 9.80E-04

9600 2.95E-06 8.37E-05 9660 5.67E-06 1.99E-04



Fig. 10. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for u .

Fig. 11. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for mq .
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Table 2 Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution.

DiBFM QS1 DiBFM TS1

NS _Err u _ mErr q NS _Err u _ mErr q

96 4.55E-02 2.04E-01 132 4.18E-02 2.61E-01

600 1.93E-03 2.31E-02 612 2.29E-03 3.84E-02

2400 1.81E-04 4.38E-03 2430 3.87E-04 5.02E-03

9600 1.77E-05
5.70E-04

(8.70E-04)
9660 3.41E-05

7.06E-04
(2.06E-03)

Fig. 10. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for u .



Fig. 11. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for mq .
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Table 3 Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution.

DiBFM QS1 DiBFM TS1

NS _Err u _ mErr q NS _Err u _ mErr q

96 2.43E-02 1.26E-01 132 2.52E-02 1.71E-01

600 8.92E-04 1.23E-02 612 1.63E-03 2.69E-02

2400 7.94E-05 2.39E-03 2430 2.43E-04
5.15E-03

(7.15E-03)

9600 7.45E-06
3.11E-04

(5.11E-04)
9660 2.35E-05

7.42E-04
(1.45E-03)

Fig. 10. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for u .



Fig. 11. Comparison of convergence of the DiBFM with the dual interpolation elements

QS1 and TS1 for a mixed problem with cubic exact solution for mq .



Fig. 12. Comparison of the accuracy of the DiBFM with the dual interpolation elements

QS1 and TS1 for u on the diagonal of the face 1x  .

Fig. 13. Comparison of the accuracy of the DiBFM with the dual interpolation elements

QS1 and TS1 for mq on the diagonal of the face 1z  .

As is illustrated in Fig. 10 and Fig.11, accuracy of the DiBFM for u and mq is greatly improved



with the increasing number of all source nodes on the boundary of the cube. And above all, from the

numerical results listed in Table 1, it can be seen that the convergence rate of these two types of the

dual interpolation elements is similar when the number of source nodes used is almost the same. In

the DiBFM, it is appealing that very high accuracy can be achieved. The numerical results of u and

mq in Fig. 12 and Fig.13 almost reproduce the analytical solution exactly, which further demonstrate

the validity of the dual interpolation elements. It clearly shows that the DiBFM has excellent

properties of high accuracy and superior convergence.

5.2 Dirichlet problems on a trimmed torus

The second example is a Dirichlet problem on a trimmed torus of major radius 3 and minor radius

1 centered at the point (2, 0, 0) with a cubic solution for u . The torus is trimmed by two spheres

with a radius of 1.5 and two cylinders with the diameter of 1 in their bottom faces. As is depicted in

Fig. 14, the coordinates of center of these two spheres are (-1, 0, 0) and (5, 0, 0), respectively. Two

cylinder faces in a top view are centered at (2, 0, -2) and (2, 0, 2), respectively. The usual polar

coordinates  and  are used for the torus. Dirichlet boundary conditions corresponding to the

exact solution (Eq. (34)) are specified on all faces of the trimmed torus.

(a) Geometry and distribution of the sample points (b) Main dimensions of the torus

Fig. 14. Geometry of a trimmed torus.

This example is further demonstrated the accuracy and convergence performance of the DiBFM for

complex geometries. It is also demonstrated that the DiBFM is less sensitive to the mesh density and

mesh quality. As is well known that a key difficulty for mesh generation is to achieve the



connectivity requirements of the desirable mesh. Inevitably, there are some irregular elements on the

trimmed spherical surface in the process of mesh generation (see Fig. 15), which is difficult to ensure

the accuracy of numerical simulation.

(a) (b) (c)

Fig. 15. Adaptive mesh generation of a trimmed torus: (a) the resulting mesh of the trimmed torus,

(b) mesh generation of the trimmed spherical surface (c) the partial enlarged view of irregular elements.

To study the convergence behaviour of the DiBFM with irregular elements, this problem is solved

using the TS1 elements with totally 1116, 2730, 5340 and 9820 source nodes, respectively.

Corresponding convergence rate of the DiBFM with different number of source nodes for mq is

shown in Fig. 16. As is illustrated in Fig. 17 and Fig. 18, the numerical results of the DiBFM for u

and mq with totally 2730 TS1 elements are evaluated over 500 sample points uniformly distributed

along a circle curve of radius 1.2 centered at the point (2, -0.6, 0) (see Fig. 14(a)). The relative errors

for u and mq on the surface are 0.0166% and 0.3718%, respectively. The potential and normal

flux distribution in the whole domain are presented in Fig. 19.
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Fig. 16. Convergence of the DiBFM with TS1 elements for

a Dirichlet problem with cubic exact solution for mq .
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Fig. 16. Convergence of the DiBFM with TS1 elements for

a Dirichlet problem with cubic exact solution for mq .

H1 范数

Fig. 16. Convergence of the DiBFM with TS1 elements for

a Dirichlet problem with cubic exact solution for mq .



Fig. 17. Comparison of the accuracy of the DiBFM with TS1 elements for u along a circle curve.

Fig. 18. Comparison of the accuracy of the DiBFM with TS1 elements for mq along a circle curve.



(a) The potential u distribution (b) The normal flux q distribution
Fig. 19. The contour plots of potential u and normal flux q in the whole domain.

It can be seen from Fig. 16 that even for the very irregular elements, high accuracy can be

achieved by the DiBFM. The convergence rate of the DiBFM for u and mq are still acceptable.

With the increasing number of all source nodes on the boundary of the trimmed torus, accurate

results and high convergence rates have been achieved. From Fig. 17 through Fig. 19, the numerical

results of u and mq obtained by the DiBFM with few source nodes are in good agreement with the

exact solution, and are no more sensitive to irregular elements. This example clearly demonstrates

the robustness of the DiBFM. The reason for high accuracy and superior convergence of the DiBFM

is that both MLS and boundary integration are directly performed on boundary faces rather than from

elements. No matter how coarse the discretization on the boundary of domain is, there are no

geometric errors introduced in the DiBFM implementation.

5.3 Steady heat transfer analysis on a cup

To study the performance of the DiBFM in analysis of more complicated geometries, a steady heat

transfer problem on a cup shown in Fig. 20(a) is investigated. The geometry and its main dimensions

are illustrated in Fig. 20(b). As is depicted in Fig. 21(a), the cup model is subjected to Dirichlet,

Neumann and Robin boundary conditions. Dirichlet boundary conditions are specified on the inner

cylindrical surface and the planar surface. The bottom planar surface outside of the cup is regarded as

adiabatic boundary, i.e. 0q  W/m2. Robin boundary conditions are specified on all other surfaces on

the boundary of the cup. For the Dirichlet boundary, T=100°C, and for the Robin boundary, the heat

transfer coefficient h is chosen to be 0.1 W/(m2·°C), the ambient temperature is T∞=20°C. The

material parameter of heat conductivity is taken as k=1.2 W/(m·°C).



(a) Geometric model of a cup (b) Main dimensions of the cup

Fig. 20. Geometry of a cup.

This numerical example is presented to show the accuracy and convergence of the DiBFM with

comparison to the FEM. The temperature and normal flux on the boundary are approximated by the

constant dual interpolation elements TS1 and QS1 in DiBFM, while these physical variables are

approximated by quadratic tetrahedral elements in FEM. This problem is analyzed by the DiBFM

with totally 2497, 3996, 6555 and 12176 source nodes, respectively. The reference solution is

obtained by FEM with a very fine mesh of 9430007 nodes for comparison purposes. For example,

the numerical results of DiBFM6555 and FEM9430007 are obtained by the DiBFM using 6555

source nodes and the FEM using 9430007 source nodes, respectively. Corresponding mesh

generation of a cup by the DiBFM with totally 2497 the dual interpolation elements (including 1677

TS1 elements and 820 QS1 elements) is given in Fig. 21(b). As is shown in Fig. 22 and Fig. 23, the

numerical results of the DiBFM with different source nodes are evaluated over 200 sample points

uniformly distributed along a straight line AB on the bottom face of the cup. High accuracy can be

obtained by the DiBFM with few source nodes. The temperature distribution in the whole domain is

presented in Fig. 24.



(a) Boundary conditions of the cup (b) Mesh generation of the cup

Fig. 21. Boundary conditions and mesh generation of the cup.

Fig. 22. Distribution of the sample points along a straight line AB for u .



Fig. 23. The potential along the straight line AB.

(a) The temperature u distribution of FEM

in main view

(b) The temperature u distribution of DiBFM

in main view



(c) The temperature u distribution of FEM

on the bottom face outside the cup

(d) The temperature u distribution of DiBFM

on the bottom face outside the cup

Fig. 24. The contour plots of temperature u in the whole domain: (a) (c) the reference solution obtained by FEM
with 9430007 source nodes, (b) (d) DiBFM with 3996 source nodes.

We have demonstrated the potential of the DiBFM to handle complex, real world geometries in a

fully automated manner, in the context of a geometric model of the cup. The CAD file of the cup was

downloaded from the web. There was no alteration to it for the purposes of analysis, no feature

removal and no geometry clean-up. In addition, meshing and analysis for complicated structures with

complex geometries, such as the cup, are automatically executed without any manual operation [39].

The CAE analysis of the cup is implemented directly on the original CAD model rather than an

elaborately built discretized model, which makes a truly seamless interaction between CAD and

CAE successfully achieved.

From Fig. 23 and Fig. 24, results of the temperature obtained by the DiBFM with few source

nodes are in good agreement with the reference solution. With the increasing number of all source

nodes on the boundary of the cup, numerical results of the temperature obtained by the DiBFM and

the FEM are both close to the reference solution. Obviously, it can be observed that the DiBFM can

well deal with numerical analysis in complex geometries and can achieve a high level of accuracy.

6. Conclusions

A novel technique based on the dual interpolation boundary face method (DiBFM) has been

proposed for three-dimensional potential problems. In this paper, a new type of elements named the

dual interpolation elements are presented. A key advantage of the dual interpolation elements is that

this type of elements can unify the continuous and discontinuous elements and improve the accuracy,



flexibility and convenience of the interpolation calculation. We have also introduced the construction

of the dual interpolation functions for use with boundary integral equations in details. Even with

some irregular elements in numerical simulation, accurate results and high convergence rates can be

achieved by the DiBFM. In the DiBFM implementation, the geometric variables in the dual

interpolation and the boundary integration are implemented directly on the bounding surfaces rather

than an elaborately built discretized model, which makes a truly seamless interaction between CAD

and CAE successfully achieved without any geometric simplification. Thus, the DiBFM could be an

essential step in the process of automatic simulation based on this competitive advantage.

Numerical results are presented for several potential problems to demonstrate the validity,

accuracy and convergence of the DiBFM. The DiBFM exhibits high accuracy and superior

convergence behavior. It is flexible and convenient to handle complicated, real world geometries in a

fully automated manner based on the DiBFM. Compared with the FEM, the results of the DiBFM

with few source nodes are in good agreement with the reference solution. By combining with the fast

multipole method [40,41], it can be applied into the specific domain of large-scale computations and

high performance computing for complex structures. In future work, we plan on developing the

DiBFM to solve 3-D problems through the use of discontinuous grids, which will substantially

relieve the burden of mesh generation.
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