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A B S T R A C T

A dual interpolation boundary face method (DiBFM) is proposed to unify the conforming and nonconforming
elements in boundary element method (BEM) implementation. In the DiBFM, the nodes of a conventional
conforming element are sorted into two groups: the nodes on the boundary (called virtual nodes) and the in-
ternal nodes (called source nodes). Without virtual nodes, the conforming element turns to be a conventional
nonconforming element of a lower order. Physical variables are interpolated using the conforming elements, the
same way as conforming BEM. Boundary integral equations are collocated at source nodes, the same way as
nonconforming BEM. To make the final system of linear equations solvable, additional constraint equations are
required to condense the degrees of freedom for all the virtual nodes. These constraints are constructed using the
moving least-squares (MLS). Besides, both boundary integration and MLS are performed in the parametric spaces
of curves, namely, the geometric data, such as coordinates, out normals and Jacobians, are calculated directly
from curves rather than from elements. Thus, no geometric errors are introduced no matter how coarse the
discretization is. The method has been implemented successfully for solving two-dimensional elasticity pro-
blems. A number of numerical examples with real engineering background have demonstrated the accuracy and
efficiency of the new method.

1. Introduction

The boundary element method (BEM) is a popular numerical tech-
nique for solving engineering problems. It has been widely applied to
solve potential problems (Zhang et al., 2009, 2017a; Ang and Yun,
2011; Gao et al., 2017), elastostatic problems (Schnack and Chen, 2001;
Zhang et al., 2011, 2018; Sladek and Sladek, 1992; Wang and Qin,
2012), elastodynamic problems (Tanaka and Chen, 2001; Li et al.,
2014; Zhao et al., 2015), contact problems (Blázquez and París, 2011;
Shu et al., 2016; Rodríguez-Tembleque et al., 2011), fracture mechanics
problems (Xie et al., 2014; Wünsche et al., 2012; Dong et al., 2011; Lei
et al., 2015) and acoustics problems (Peake et al., 2015; Shen and Liu,
2007; Chen et al., 2010; Wang et al., 2013). This is mainly due to its
unique advantages in higher accuracy, dimension reduction and natu-
rally treating infinite domain problems without the need for artificial
boundary conditions or domain truncation. The method is also popular
because it can use the nonconforming elements, which is the most
important advantage of BEM (Citarella et al., 2018; Carlone et al.,
2016). This makes the mesh generation a simpler process than with
conforming elements like the finite element method (FEM). However,
how to take full advantages of this feature has been a long-standing
issue in the BEM community, because the conforming and

nonconforming elements each have their own advantages and dis-
advantages (Floreza and Powera, 2001; Manolis and Banerjee, 1986;
Parreira, 1988).

Use of conforming elements (see Fig. 1 (a)) leads to certain diffi-
culties at geometric corners and physical corners (e.g., points which
boundary condition is discontinuous). At geometric corners, the trac-
tion in elasticity problem and the normal flux in potential problem are
ill-defined because of the ambiguity in the direction of the normal. At
physical corners, the approximation of the discontinuous field is very
inaccurate, because the shape functions of conforming elements main-
tain the continuity of the fields. A way of avoiding these difficulties is
by using multiple-node method (Mitra and Ingber, 1993). In this
method, multiple source nodes are placed at corners (see Fig. 1 (b)).
These nodes, however, can lead to a set of linearly dependent equations,
if Dirichlet boundary conditions are specified on the two adjacent
edges. Obviously, the final system of equations cannot be solvable.
Besides, the multiple-node method and conforming element method
cannot guarantee the C1, continuity, which is necessary for hypersin-
gular integral (Guiggiani et al., 1992).

Use of nonconforming elements (see Fig. 1 (c)) is able to naturally
overcome these difficulties. The nonconforming element has some at-
tractive advantages, such as simplifying the treatment of corner
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problems, the evaluation of the hypersingular integral and the mesh
generation. Since the source nodes of the nonconforming element are
inside the element, the field variables at the interfaces between ele-
ments must be interpolated from values at the interior nodes. Thus,
some inaccuracies are introduced. For the same level of accuracy,
nonconforming element requires much more source nodes than con-
forming element. This means more computer resources and CPU time.

To cope with the problems above, we have developed the double-
layer interpolation method (Zhang et al., 2017b), here called dual in-
terpolation method. A primary goal of our research is to unify the
conforming and nonconforming elements in BEM implementation.
Another goal is to improve the performance of the BEM. Yet another
goal is to simplify the mesh generation. The dual interpolation method
is obtained by coupling the conventional polynomial element inter-
polation with the moving least-squares (MLS) approximation. The
nodes of a dual interpolation element are sorted into two groups: virtual
and source nodes (see Fig. 1(d)). With virtual and source nodes, it is
equivalent to a standard conforming element. Without virtual nodes, it
turns to be a conventional nonconforming element of a lower order.
Besides, it has the following features: (i) improving the interpolation
accuracy of the original nonconforming element by two orders; (ii)
accurately approximating both continuous and discontinuous fields by
manipulating the influence domains of some specific virtual nodes in
the MLS; and (iii) simplifying the treatment of corner problems and the
evaluation of the hypersingular integral, because the boundary integral
equation (BIE) is collocated at source nodes rather than virtual nodes.

In this paper, the dual interpolation method is combined with the
boundary face method (BFM) (Zhang et al., 2009; Shu et al., 2016;
Wang et al., 2013) to solve the 2D elasticity problems at first time. We
call the combined method the dual interpolation boundary face method
(DiBFM). In the new method, displacements and tractions are inter-
polated using dual interpolation elements (first-layer interpolation), the
same way as conforming BEM. BIEs are collocated at source nodes,
only, the same way as nonconforming BEM. In consequence, the
number of linear equations obtained by discretizing the BIE is less than
the number of unknown nodal values. To make the final system of
linear equations solvable, additional constraint equations must be
needed to condense the degrees of freedom for all virtual nodes. These
equations are constructed by the MLS approximation (second-layer in-
terpolation). For the same number of source nodes, the size of the final
coefficient matrix in the DiBFM is the same as that in the conventional

BEM, while the DiBFM is able to possess higher computational accu-
racy. This is a major advantage of our method.

In the DiBFM implementation, both boundary integration and dual
interpolation are performed in the parametric spaces of each curve,
which are exactly same as the boundary representation (B-rep) data
structure. As the B-rep data structure is used in most CAD software, it
has the potential to seamlessly interact with CAD software. The geo-
metric errors can be avoided even in a coarse grid, because the geo-
metric data are calculated directly from the curves rather than from
dual interpolation elements. In addition, the MLS in the DiBFM is just
used to assemble the coefficient matrices, rather than evaluate the
shape functions at each Gaussian point in boundary integration.
Meanwhile, in the process of MLS computation, the source nodes cov-
ered in the influence domain of a virtual node are obtained by directly
searching the neighboring three layer elements, instead of looping over
all source nodes located on the curve. Thus, the efficiency of the MLS in
a pure mesh-free method is lower than that of MLS in the DiBFM.

The extensions of the DiBFM to solve three-dimensional (3D) pro-
blems will substantially simplify the mesh generation. This is an at-
tractive advantage of our method. The reasons for this include the
following: (i) discontinuous grids are much easier to generate than
continuous grids (see Fig. 2); and (ii) both continuous and dis-
continuous fields can be naturally and accurately approximated by dual
interpolation method, even if discontinuous grids are used.

This paper is organized as follows. In Section 2, the parameter
mapping scheme for 2D problems is briefly described. Section 3 de-
scribes the dual interpolation method for elasticity problem. A general
formulation of the DiBFM for elasticity problem is described in Section
4. A number of numerical examples are given in Section 5. The paper
ends with conclusions and discussions in Section 6.

2. Parameter mapping

For 2D problems, the boundary of the domain is represented by
curves in parametric form exactly as the B-rep data structure in most
CAD software. In the DiBFM, both boundary integration and dual in-
terpolation are performed in parametric space of each curve.

A curve is represented in parametric form as:

=
=

x x
x x

( )
( )

, [0,1],1 1

2 2 (1)

Fig. 1. Boundary discretized by quadratic elements: (a) conforming elements, (b) conforming elements with multiple-node method, (c) nonconforming elements, and
(d) dual interpolation elements.
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where is the parametric coordinate of curve (see Fig. 3). In this paper,
a geometric map F: 2 is created by Eq. (1). The parametric co-
ordinate is obtained by the following linear transformation:

= + +0.5( ) 0.5( ) , [ 1,1],b a b a (2)

where is the intrinsic coordinate defined on the curve element, a and
b are parametric coordinates of vertices of the curve element (see
Fig. 4). If we obtain the parametric coordinate in parametric space
located at the curve element, the coordinates x x( , )1 2 in Euclidean space

2 can be accurately calculated by Eq. (1). This means that the calcu-
lated point is located on the initial curve so that no geometric errors are
introduced.

3. Dual interpolation method for elasticity problem

3.1. Dual interpolation element

As shown in Fig. 5, the nodes of a dual interpolation element are
classified into two groups: source and virtual nodes. Taking into ac-
count both virtual and source nodes, it is equivalent to a standard
conforming element. Ignoring virtual nodes, however, it becomes a
conventional nonconforming element. Thus, the dual interpolation
element is able to unify the conforming and nonconforming elements.
Shape functions of the elements (a), (b) and (c) are:
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where d is the offset of source nodes, which is constrained to the in-
terval (0, 1). In this paper, the value of d is taken to be 0.25.

3.2. First-layer interpolation

For 2D elasticity problems, the independent physical variables on
the boundary are displacements ui and tractions ti (i=1, 2). These
variables in this study are approximated by dual interpolation elements
(first-layer interpolation), which are performed in parametric space:

= = = +
= =
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where n and n are the total number of source and virtual nodes of
dual interpolation element, respectively. N ( )s , u Q( )i

s and t Q( )i
s are the

shape function, displacement and traction of the th source node in dual
interpolation element, respectively. N ( )v , u Q( )i

v and t Q( )i
v are the

shape function, displacement and traction of the th virtual node on
dual interpolation element, respectively. In this study, we will use the
second-layer interpolation to calculate u Q( )i

v and t Q( )i
v , because these

nodal values are not independent variables.

3.3. Second-layer interpolation

The MLS approximation is adopted for the second-layer interpola-
tion. In the proposed method, it is just used to construct the relation-
ships between source and virtual nodes. Due to the fact that our method
has the topological relationships between the nodes and elements, the
source nodes covered in the influence domain of a virtual node can be
obtained by directly searching the neighboring three layer elements
(see Figs. 6–8).

As shown in Fig. 1(d), one virtual node is placed at a point where
two adjacent elements are smoothly connected, letting the two ele-
ments share a same virtual node. However, two virtual nodes are placed
at geometric corner or point which boundary condition is

Fig. 2. Discontinuous surface girds of the flange plate.

Fig. 3. Mapping between the Euclidean space and the parametric space.

Fig. 4. Curve element: (a) in parametric space and (b) in space of intrinsic
coordinates.
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discontinuous, one for each element. Unlike the multiple-node method
(Mitra and Ingber, 1993), the BIE is not collocated at virtual nodes in
the DiBFM. Obviously, the two virtual nodes cannot lead to a pair of
linearly dependent equations no matter what boundary conditions are
imposed on two adjacent edges.

For virtual node Qv at smooth boundaries (see Fig. 6), the second-
layer interpolation for u Q( )i

v and t Q( )i
v are defined as:
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where v is the parametric coordinate of virtual node Qv, M is the total
number of source nodes Qm

s covered in the influence domain of Qv,
u Q( )i m

s and t Q( )i m
s are displacement and traction of source node Qm

s ,

respectively. m
vs v is the shape function of second-layer interpolation

corresponding to source node Qm
s :
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s is the parametric coordinate of source node Qm

s , n
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m
s are the shape functions of MLS approximation corresponding to

source node Qm
s . The details of the MLS approximation are available in

Ref. (Lancaster and Salkauskas, 1981).
For virtual node Qv at geometric corner or point which boundary

condition is discontinuous (see Figs. 7 and 8), t Q( )i
v is also calculated

by Eq. (9). u Q( )i
v is calculated by:
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where Q̄ v is a virtual node which is at the same geometric location for
virtual node Qv (see Fig. 7), and denotes the arc length in 2.

From Eqs. (8), (9) and (11), the displacements and tractions can be
naturally and accurately approximated by manipulating the influence
domains of some specific virtual nodes in the second-layer interpolation
(see Figs. 6–8). Fig. 9 shows the algorithm of dual interpolation
method.

As pointed out in Ref. (Belytschko et al., 1994), the Gaussian-type
weight functions yield excellent results. In this study, we use the fol-
lowing Gaussian weight function:
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in which
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where ¯ can either be the parametric coordinate of virtual node Qv or
the parametric coordinate of source node Qm

s , cn is a constant control-
ling the shape of the weight function, is the size of the support for the
weight function w ( ¯)n . In this paper, is defined as:
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where lmax is the maximum length of the cells connected to virtual node
Qv, in parametric space (see Fig. 6).

Because the stability of the MLS approximation deteriorates severely
as the nodal spacing decreases, the following quadratic basis is used (Li
and Li, 2016):
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Fig. 5. Dual interpolation elements for 2D problems:
(a) constant, (b) linear, and (c) quadratic.

Fig. 6. Influence domain of an interested virtual node Q v, for Q v located at smooth boundaries.
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4. DiBFM for elasticity problem

4.1. Boundary integral equation

Consider the elasticity problem in a 2D finite domain with the
boundary . The boundary integral equation (BIE) for the elasticity
problem is:

=c P u P U P Q t Q d Q T P Q u Q d Q

P Q

( ) ( ) ( , ) ( ) ( ) ( , ) ( ) ( ),

, ,

ij j ij j ij j

(15)

where uj and tj (j=1, 2) are the displacement and traction components,
respectively. The coefficient =c P( ) 1/2ij ij if is smooth at source node
P. For plane-strain problems, U P Q( , )ij and T P Q( , )ij are:

= +U P Q
µ v

v
r

r r( , ) 1
8 (1 )

(3 4 ) ln 1 ,ij ij i j, , (16)

= +{
}

T P Q
v r

r
n

v r r

v r n r n

( , ) 1
4 (1 )

[(1 2 ) 2 ]

(1 2 )( ) ,

ij ij i j

i j j i

, ,

, , (17)

where r is the distance between the source node P and field point Q, n is
the outward normal at the field point Q, ni and nj are the components of
n, μ and v are the shear modulus and the Poisson's ratio, respectively.

4.2. Discretization of the BIE for elasticity problems

In the DiBFM, the BIE is discretized by dual interpolation elements,
but we collocate the BIE only at source nodes Pk (k=1,2, …, NS). The
discretization form of the BIE for elasticity problems is:
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virtual node on eth element, respectively.
The matrix form of Eq. (18) is:

Fig. 7. Influence domain of an interested virtual node Q v at geometric corner: (a) for approximating displacements and (b) for approximating tractions.

Fig. 8. Influence domain of an interested virtual node Q v at point which
boundary condition is discontinuous: (a) for approximating displacements and
(b) for approximating tractions.

Fig. 9. Flow chart of dual interpolation method.
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where u j
s and t j

s are displacement and traction vectors containing all
source nodes, respectively. uj

v and t j
v are displacement and traction

vectors containing all virtual nodes, respectively. Hij
ss, Gij

ss, Hij
sv and Gij
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are the coefficient matrices corresponding to vectors u j
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v and t j
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respectively. Because these vectors contain known and unknown vari-
ables, Eq. (19) can be rewritten as:
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where the subscripts dj and nj stand for the boundary conditions of
Dirichlet and Neumann type, respectively. ūd

s
j and ūd

v
j are the known

Fig. 10. Displacement field problem: (a) geometric model and (b) the number of source nodes on each edge (n=1, 3, 6, 9, 12).

Table 1
Numerical results for displacement field problem.

DiBFM BEM

NE NS Err_t1 Err_t2 Time (s) NE NS Err_t1 Err_t2 Time (s)

102 204 5.05e-03 4.47e-03 38.47 204 204 2.33e-02 2.33e-02 29.86
306 612 1.07e-04 1.12e-04 121.98 612 612 1.92e-03 1.92e-03 101.87
612 1224 1.14e-05 1.11e-05 275.71 1224 1224 4.38e-04 4.38e-04 235.26
918 1836 3.05e-06 2.91e-06 457.37 1836 1836 1.89e-04 1.89e-04 385.73
1224 2448 1.21e-06 1.15e-06 676.28 2448 2448 1.05e-04 1.05e-04 572.94

Fig. 11. Relative errors of traction t1.

Fig. 12. Von Mises stress along the curve AB.
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displacement vectors containing source and virtual nodes of Dirichlet
boundary conditions, respectively. t̄n

s
j and t̄n

v
j are the known traction

vectors containing source and virtual nodes of Neumann boundary
conditions, respectively.

4.3. Condensation of degrees of freedom for virtual nodes

Since the BIEs are collocated at source nodes only, the number of
linear algebraic equations is less than the number of unknown nodal
values (see Eq. (20)). To make the final system of linear equations
solvable, additional constraint equations are required to condense the
degrees of freedom for virtual nodes. The matrix forms of these equa-
tions are:
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j j are shape function matrices of the second-
layer interpolation, which are constructed by the MLS approximation
descript in Section 3.3.

Substituting Eqs. (21) and (22) into Eq. (20) yields:
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in which
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4.4. Solution for elasticity problems

Applying the boundary conditions at each source and virtual nodes
and switching the columns of matrices in Eq. (23), a standard system of
linear equations as follows is formed:

=Ax b, (24)
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Fig. 13. Comparison of computational efficiency for traction t1.

Fig. 14. Thick-wall cylinder under internal pressure: (a) geometric model and boundary conditions; and (b) the number of source nodes on each edge (n=1, 2, 4, 8,
16).
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where A is the coefficient matrix of dimensions 2NS×2NS for 2D
elasticity problems, and b is the known right-hand-side vector. x is the
unknown vector only containing source nodes.

Using the LU decomposition to solve Eq. (24), we can obtain all
unknown values of source nodes in each dual interpolation element.
Then, all unknown values of virtual nodes on each dual interpolation
element are calculated by the second-layer interpolation, namely, Eqs.
(21) and (22).

For the same number of source nodes, the size of the overall system
of linear equations in the DiBFM is the same as that in the conventional
BEM (see Eq. (24)), while the DiBFM is able to obtain higher compu-
tational accuracy. This is a major advantage of our method. The reasons
for this are: (i) both displacements and tractions can be accurately
approximated by dual interpolation method; (ii) the application of the
boundary conditions in our method is more accurate than that in the
conventional BEM; and (iii) the geometric data in the DiBFM are di-
rectly calculated from the curves to eliminate geometric errors (see Eq.
(1)).

5. Numerical examples

In this section, four numerical examples are given to demonstrate
the accuracy and efficiency of the DiBFM for solving 2D elasticity
problems. All computations were done on a desktop computer with an
Intel Core i7-4790 CPU (3.6-GHz) and 12 GB memory.

For the purpose of error estimation and convergence study, the re-
lative error is defined as:

=
=

error
v M

v v1 1 [ ] ,
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M

i
e

i
n

max 1

( ) ( ) 2

(25)

where v max is the maximum value of displacement ui or traction ti over
M sample points, and the superscripts (e) and (n) refer to the exact and

Table 2
Numerical results for thick-wall cylinder under internal pressure.

DiBFM BEM

NE NS Err u_ r Err _ r Err _ Time (s) NE NS Err u_ r Err _ r Err _ Time (s)

13 39 3.67e-05 1.12e-03 9.68e-04 3.58 19 42 1.33e-03 1.16e-02 4.23e-03 3.29
26 78 7.51e-06 4.52e-04 1.03e-04 7.53 39 82 1.22e-04 3.17e-03 8.02e-04 6.60
52 156 9.98e-07 1.17e-04 1.45e-05 16.23 78 160 1.56e-05 7.94e-04 1.97e-04 13.99
104 312 1.22e-07 2.71e-05 2.68e-06 35.49 156 316 1.98e-06 1.96e-04 4.90e-05 30.81
208 624 1.44e-08 5.89e-06 5.36e-07 80.27 312 628 2.49e-07 4.86e-05 1.22e-05 69.91

Fig. 15. Relative errors of radial stress r .

Fig. 16. Radial stress r along the edge AB.

Fig. 17. Comparison of computational efficiency for radial stress r .
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numerical solutions, respectively.
In all computations, unless indicated otherwise, the parameter d in

Eqs. (4) and (5) is taken to be 0.25, the parameter d cˆ /n n in Eq. (12) is a
constant and equals to 2.0.

In the following figures and tables, symbols NE and NS are the total
number of elements and source nodes, respectively. The CPU time spent
in constructing and solving the system equations is denoted as Time.
The maximum value of Von Mises stresses is denoted as Max_Mises.

5.1. Displacement field problem

The first example is a displacement field problem on a structure,
which is constituted by a set of circles with different radius (see Fig. 10
(a)). Plane strain cases with Young's modulus E=1 (in consistent units)
and Poisson's ratio v=0.25 are considered. The displacement fields
imposed on all edges are:

=
= +

u x x x
u x x x
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2 1
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This example is presented to show the accuracy and efficiency of the
DiBFM with comparison to the conventional BEM. In the DiBFM, dis-
placements and tractions are approximated by linear dual interpolation
elements, while these variables are approximated by linear conforming
elements in the BEM. Fig. 10 (b) shows the number of source nodes on
each edge.

The relative errors of traction ti on the whole boundary, and the CPU
time spent in constructing and solving the system equations are listed in
Table 1. In the table, Err_t1 and Err_t2 denote the relative errors of
tractions t1 and t2, respectively. For greater clarity, the relative errors of
traction t1 are plotted in Fig. 11. Combined with the exact solution, the
Von Mises stress along a curve AB is shown in Fig. 12. These numerical
results are obtained by using 612 source nodes.

From Figs. 11 and 12, it clearly shows that the DiBFM can obtain more
accurate results than the conventional BEM with the same number of
source nodes. It is also concluded that our method is less sensitive to the
mesh density than the conventional BEM. For example, the result relative
error is only 0.5084% obtained by the DiBFM with 204 source nodes,
while the relative error shoots up to 2.301% obtained by the conventional
BEM with the same number of source nodes. The reasons for this are as
follows: (i) the physical fields approximated by the linear dual interpola-
tion elements are more accurate than that by the conventional linear
elements; (ii) for the same number of source nodes, the application of the
boundary conditions in the DiBFM is more accurate than that in the BEM,
because the boundary conditions are imposed at source and virtual nodes
in the DiBFM (see Eq. (24)), while these conditions are just imposed at
source nodes in the BEM; and (iii) no geometric errors are introduced even
in a coarse mesh, because the geometric data are calculated directly from
the curves rather than from elements (see Section 2).

Fig. 13 shows the CPU time spent in constructing and solving the
system equations. For the same level of accuracy, it is clear that the
DiBFM requires less CPU time than the conventional BEM.

5.2. Thick-wall cylinder under internal pressure

The second example is a thick-walled cylinder subjected to a uni-
form pressure on the inner surface with a=100, b=200 and p=1,
where a and b indicate the inner and outer radius of the cylinder, and p
is the uniform internal pressure. Due to the symmetry of the problem,
only quarter of the structure is considered (see Fig. 14 (a)). Plane strain
cases with Young's modulus E=2.5 (in consistent units) and the
Poisson's ratio v=0.3 are assumed. The analytical solution for this
problem is:
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In this example, the BIE is discretized by quadratic elements with
different methods. Fig. 14 (b) shows the number of elements on each
edge. Table 2 lists the relative errors of radial displacement ur , radial

Fig. 18. Combination wrench: geometric model and boundary conditions.

Table 3
Numerical results for combination wrench.

DiBFM FEM

NE NS Max_Mises (MPa) NE NS Max_Mises (MPa)

116 348 147.6142 1099 2409 139.6564
238 714 147.7179 6891 14,287 140.7536
476 1428 147.7289 2,6801 54,601 147.2225
714 2142 147.7317 106,769 215,531 148.6239
833 2499 147.7318 712,649 1,430,279 148.5471
952 2856 147.7317 1,936,667 3,881,639 148.4157

Fig. 19. Von Mises stress along the edge CD.
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stress r and hoop stress with different source nodes. In this table,
symbols Err u_ r, Err_ r and Err_ denote the relative errors of ur , r
and , respectively. For greater clarity, the errors of r are shown in
Fig. 15. With 39 source nodes, the r along an edge AB is plotted in
Fig. 16. The CPU time spent in constructing and solving the system
equations is illustrated in Fig. 17.

From Figs. 15–17, it can be seen that the DiBFM possesses much
higher accuracy, convergence rates and computational efficiency than
conventional BEM.

5.3. Combination wrench

To demonstrate the ability of DiBFM to handle arbitrary geometries,
the problem of a combination wrench is analyzed under plane stress
conditions with Young's modulus E=193 GPa and Poisson's ratio
v=0.27. As shown in Fig. 18, a uniform pressure p=1MPa is imposed
on edge AB, and the hexagon on the right end is fixed on all sides.

To validate the accuracy of our method, a comparison study be-
tween the DiBFM and the FEM has been made. In the DiBFM, the dis-
placement and tractions are approximated by quadratic dual inter-
polation elements, while these variables are approximated by quadratic
triangle elements in the FEM. Table 3 lists the numerical results ob-
tained by the two methods with six sets of elements and source nodes.
In Figs. 19 and 20, the numerical results obtained by FEM with
1,936,667 quadratic triangle elements and 3,881,639 nodes are de-
noted as a Reference Solution. Fig. 19 shows the Von Mises stresses
along an edge CD, and Fig. 20 shows the contour plots of Von Mises
stresses.

Fig. 20. Von Mises stress for combination wrench: (a) DiBFM with 348 source nodes, (b) FEM with 2049 source nodes, and (c) Reference Solution.

Fig. 21. Retaining ring: geometric model and boundary conditions.

Table 4
Numerical results for retaining ring.

DiBFM FEM

NE NS Max_Mises (MPa) NE NS Max_Mises (MPa)

248 744 154.691 1450 3203 140.562
372 1116 154.880 27,610 56,605 153.953
496 1448 155.037 107,937 218,628 156.923
620 1860 154.995 423,925 853,340 156.942
744 2232 154.991 660,007 1,326,888 156.823
992 2976 154.999 2,628,209 5,270,170 156.430

Fig. 22. Von Mises stress along the line AB.
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From Table 3 and Fig. 19, the comparison demonstrates that our
method is efficient in calculating stresses. For the same number of
source nodes, our method can lead to a highly accurate stress result.

5.4. Retaining ring

To demonstrate the ability of DiBFM to handle small sized features
of a structure, the problem of a retaining ring was analyzed under plane
stress case conditions with Young's modulus E=206GPa and Poisson's
ratio v=0.3. Fig. 21 shows the geometry and boundary conditions of
the retaining ring.

The physical variables in this example are also approximated by
quadratic elements as those in the third example. Numerical results
obtained by the two methods with different source nodes are listed in
Table 4. In Figs. 22 and 23, the results obtained by the FEM with
2,628,209 quadratic triangle elements and 5,270,170 nodes are de-
noted as a Reference Solution. Fig. 22 shows the Von Mises stress
along a line AB, and Fig. 23 shows the contour plots of Von Mises
stresses.

This example illustrates an important concept: the DiBFM has the
potential to seamlessly interact with CAD software. The reason for this
is that the geometry information of the computational model in our
method is highly consistent with the B-rep data structure of the geo-
metrical model in most CAD software.

6. Conclusions and discussions

A DiBFM has been proposed for solving 2D elasticity problems. This
method is able to unify the conforming and nonconforming elements in
BEM implementation. In the new method, displacements and tractions
are approximated by the conforming elements, the same way as con-
forming BEM. BIEs are collocated at source nods only, the same way as
nonconforming BEM. In consequence, the number of unknown nodal
values is more than that of linear equations obtained by discretizing the
BIE. To make the final system of linear equations solvable, additional
constraint equations are needed to condense the degrees of freedom for
all virtual nodes. These constraints are constructed by the MLS ap-
proximation. Thus, the size of the final coefficient matrix in the DiBFM
is the same as that in the conventional BEM (see Eq. (24)), while the
DiBFM can obtain higher computational accuracy.

The DiBFM is implemented based on B-rep data structure used in
standard CAD software. Thus, it has the potential to seamlessly interact
with CAD software. The geometry data in boundary integration and
dual interpolation are directly calculated from curves (see Eq. (1)), thus
no geometric errors are introduced. Besides, the MLS in the DiBFM is
just used to assemble the coefficient matrices, rather than evaluate the
shape functions at each Gaussian point in boundary integration.
Meanwhile, in the process of MLS computation, the source nodes cov-
ered in the influence domain of a virtual node are obtained by directly
searching the neighboring three layer elements (see Figs. 6–8). Thus,

the efficiency of the MLS in our method is much higher than that of MLS
in a pure mesh-free method.

The DiBFM has been verified by a number of numerical examples
with real engineering background. It was observed that the solution was
accurate for the displacements and stresses inside the domain and on
the boundary. Compared with the BEM, it not only possesses higher
accuracy, convergence rates and computational efficiency, but also is
less sensitive to the mesh density. Extensions of the DiBFM to solving
3D problems will substantially simplify the mesh generation (see
Fig. 2). This is an attractive advantage of our method. By coupling with
the fast multipole method (Zhang et al., 2005, 2010; Zhang and Tanaka,
2008), it may be applied to perform large-scale computations for
complicated structures. This is also ongoing.
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