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Abstract 

A new method is proposed for the numerical evaluation of domain integrals in a 
3D boundary element method. These integrals arise in the solution of the transient 
heat conduction problems, using a time-dependent boundary integral equation 
method named as pseudo-initial condition method. As the time-dependent kernel 
in the domain integral is close to singular when small time step is used, a 
straightforward application of Gaussian quadrature may produce large errors, and 
thus lead to instability of the analysis. In this paper, a coordinate transformation 
coupled with an element subdivision technique is presented. The coordinate 
transformation is denoted as  , ,    transformation, while the element 
subdivision technique considers the position of the source point, the property of 
the time-dependent fundamental solution and the relations between the size of the 
element and the time step. With the coordinate transformation and the element 
subdivision technique, more Gaussian points are shifted towards the source point, 
thus more accurate results can be obtained. Numerical examples have 
demonstrated the accuracy and efficiency of the proposed method. 
Keywords: time-dependent, domain integrals, transient heat conduction, 
boundary element method, element subdivision technique. 

1 Introduction 

The transient heat conduction problem widely appears in engineering problem. 
The boundary element method (BEM) is a very attractive method to analyze this 
problem [1–10]. The implementation of BEM based on time-dependent 
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fundamental solution for transient heat conduction problem can be classified into 
two kinds: the time convolution method and the pseudo-initial condition method. 
In the time convolution method, temperature and flux at each step are computed 
through a convolution of temperature and flux on the boundary at previous steps. 
If the initial temperature and the heat generation are omitted, the time convolution 
method leads to a pure boundary method. However, as indicated in [4–8], the time 
convolution method suffers from the time-consuming convolution especially in 
the case that a long time history is concerned. Compared with the time convolution 
method, no time consuming convolution is required in the pseudo-initial condition 
method. Therefore, the pseudo-initial condition method is more widely used than 
the time convolution method in engineering problem. When using the pseudo-
initial condition method, the temperature computed in the previous step is 
considered as the initial condition in current step. Thus, the domain integral of this 
pseudo-initial condition is required in this method. 
     Although the domain integrals are actually regular in nature, they can’t be 
evaluated accurately and efficiently by the standard Gaussian quadrature when the 
small time step is used. This is because as the time step approaches zero, the 
integrand in the domain integral (the time-dependent fundamental solution) is 
close to singular as the source point is on the integration element. The difficulty 
of numerically integrating a function with such behavior can introduce numerical 
unstable problems into the solution, as reported in [11–14]. Thus accurate 
calculation of the domain integrals is important for the successful implementation 
of the pseudo-initial condition method. 
     Various methods within the scope of BEM have been proposed to cope with 
such problem. Sharp investigated that if the time step is chosen to be too small, 
the accuracy of the approximation deteriorates. And a stability condition [11] was 
derived to avoid the problem. Peirce et al investigated that the size of the spatial 
mesh relative to the time step affected the accumulation of errors in the one-step 
recursion scheme. Thus they introduced a dimensionless meshing parameter [12] 
whose magnitude governs the performance of the one-step BEM. The main 
drawback of the two methods is that if the time step is very small, the 
computational cost is huge according to requirement of these methods. The authors 
think that the bottleneck is how to accurately calculate the domain integrals which 
are involved with the time-dependent fundamental solution. So it is time to 
develop a new method for evaluating the domain integrals accurately and 
efficiently. This paper presents a new method for the domain integrals. The new 
method inherits advantages of the Sharp’s stability condition and Peirce’s 
dimensionless meshing parameter. Moreover, a new coordinate transformation 
coupled with an element subdivision technique is introduced to evaluate the 
domain integrals. Thus the influence of the size of the spatial mesh relative to the 
time step is weakened. 
     In our method, firstly a coordinate transformation denoted as  , ,    
transformation is introduced. It is an extension of Zhang’s  ,   transformation 
[15]. Furthermore, an element subdivision technique is proposed considering the 
position of the source point, the shape of the element and a dimensionless meshing 
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parameter which is proposed by Peirce et al. With the element subdivision 
technique, integration elements are divided into pyramidal and hexahedral patches. 
And the rapid variations of the integrand are smoothed out by using the  , ,    
transformation on pyramidal patches. Thus the integrands of domain integrals 
which vary drastically can be accurately calculated by our method even if the time 
step is very small. Numerical examples are presented to verify our method. Results 
demonstrate the accuracy and efficiency of our method. 
This paper is organized as follows. In section 2, the boundary integral equation 
and the domain integral are described. Section 3 introduces the  , ,    
transformation and the element subdivision technique. Numerical examples are 
given in Section 4. The paper ends with conclusions in Section 5. 

2 General description 

2.1 The boundary integral equation 

In this section, we study boundary integral solutions to the diffusion equation 
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     The boundary integral equation for transient heat conduction in an isotropic, 
homogeneous medium Ω bounded by Γ is given by: 
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where y  and x  are the source and the field points, respectively. ( )c y  is a 

function of the solid angle of the boundary at point y . k  denotes the diffusion 

coefficient, 0t  stands for the initial time and 0 0( , )u tx  is the initial condition. 

     The time-dependent fundamental solution *u  is as follows: 
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* *q u n                                                    (4) 

where Ft t   , r  represents the Euclidean distance between the source and the 

field points, and n  is the unit outward normal at the boundary. 

2.2 The domain integral 

The domain integral involved in Eq. (2) is as follows: 
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The initial condition 0 0( , )u tx  is a regular function. As the time step approaches 

zero, the integrand in the domain integral (the time-dependent fundamental 
solution *u ) is close to singular as shown in Fig. 1. Thus the domain integrals 
cannot be accurately calculated by the standard Gaussian quadrature when small 
time step is used. 

Figure 1: Variation of u* with r for several values of time steps. 

3 New method for evaluating the domain integrals 

3.1 The  transformation 

In this section, we first introduce the  , ,    transformation. The transformation 

is used in the following sub-pyramid, and this is a method for solving the singular 
integrals. To construct the  , ,    coordinate system as shown in Fig. 2, the 

following mapping is used: 
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0.1  0.01 

0.001  0.0001 
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Combining Eqs. (6a)–(6b), the expression for obtaining coordinates  , ,x y z  can 

be written as: 
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The Jacobian of the transformation from the  , ,x y z  system to the  , ,    

system is 
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With the  , ,    transformation, the rapid variations of the integrand are 

smoothed out in some degree. Thus, the computational accuracy of the domain 
integrals can be improved. 

 

Figure 2: The  , ,    coordinate transformation. 

3.2 Element subdivision 

To further improve the computational accuracy of the domain integrals, an element 
subdivision technique is proposed in this part. From the Fig. 1, it can be seen that 
a large spike occurs in the integrand near the source point as the time step value is 
small. Thus the steep slopes produced by the integrand require that integration 
points be shifted towards the source point in order to evaluate more accurately the 
integral under consideration. The detailed analysis is as follows. 
     Firstly we study the probability density function of normal distribution 
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     From Eq. (9), it can be noted that the form of the probability density function 
is almost like that of the time-dependent fundamental solution *u . As all we know, 
the integral value of Eq. (10) mainly concentrates in the interval  3 ,3  . This 

also applies similarly to the evaluation of the domain integral for the time-

dependent fundamental solution. Then a length parameter k   is introduced, 

and k  is similar to   in the probability density function. 
     Through the above analysis, the following element subdivision technique is 
introduced as shown in Fig. 3: 
 Firstly,  a  cube region with the length of 2 k   is constructed to well cover

the source  point on the integration element.  If the cube region beyond the
boundary of  the element,  taking  that of  the  element  as  the boundary of 
the cube region.

 Secondly,  sub-pyramids  are created in cube region considering the position
of  the  source point and sub-hexahedrons are constructed in the element’s
remaining regions.

The advantage of the proposed element subdivision technique is that more 
integration points are shifted towards the source point. Using the element 
subdivision technique coupled with the  , ,    transformation, the domain 

integrals can be accurately calculated. 

Figure 3: The subdivision of hexahedron element. 

4 Numerical examples 

To verify the accuracy and efficiency of our method, several examples are 
presented in this section. The domain integrals of the following form are 
considered: 
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     The coefficient k  in Eq. (11) is assumed to be 1 and the dimensionless 
parameter   is 8. The  , ,    transformation with 10×10×15 Gaussian points 

is used on the sub-pyramids and 5×5×5 point Gaussian quadrature is used on the 
sub-hexahedrons. 
     The numerical values obtained by our method will be compared to ‘exact’ 
values in terms of the relative error defined by 

Relative Error numerical exact

exact

I I

I


                                   (12) 

where numericalI  and exactI  are the numerical and ‘exact’ values of the integral under 

consideration, respectively. The accuracy of exactI  is to 12 decimal places. 

4.1 Example 1 

In the first example, the domain integral of Eq. (11) is evaluated over a hexahedron 
element with the node coordinates of (-1, -1, -1), (-1, 1, -1), (-1, 1, 1), (-1, -1, 1), 
(1, -1, -1), (1, 1, -1), (1, 1, 1), (1, -1, 1) as shown in Fig. 4. The coordinate of the 
source point is set at (1, 1, 1). The relative errors of various methods with different 
time steps are compared in Table 1.   represents the time step value. 5×5×5 
means straightforward Gaussian quadrature with 5×5×5 Gaussian points and the 
 , ,    transformation combined with the element subdivision technique is 

denoted as  , ,   . 

 

Figure 4: The node coordinates of hexahedron element. 

     A number of interesting points can be drawn from Table 1: 
1. As the time step is large, accurate numerical results can be obtained by 

applying Gaussian quadrature straightforward, and better accuracy can be 
obtained with more Gaussian points. 

 1, 1, 1    1,1, 1 

 1,1,1 1, 1,1 

 1, 1, 1   1,1, 1

 1,1,1 1, 1,1
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2. The standard Gaussian quadrature becomes inefficient and inaccurate to 
evaluate the domain integral when the time step is smaller than 0.001. 

3. Using the proposed method, the domain integral can be accurately and 
efficiently calculated within a wide range of the time step  . 

     As is illustrated in this example, when the time step is very small, the domain 
integrals cannot be accurately calculated by the standard Gaussian quadrature. 
However, with our method, high computational accuracy can be obtained within 
a wide range of the time step  . 
 

Table 1:  Relative errors for integral I  on hexahedron element with the node 
coordinates of(-1, -1, -1), (-1, 1, -1), (-1, 1, 1), (-1, -1, 1), (1, -1, -1), 
(1, 1, -1), (1, 1, 1), (1, -1, 1). Errors less than 121 10  are indicated 
with a ‘-’. 

  0.1 0.01 0.001 0.0001 0.00001 

5×5×5 1.61E-03 2.80E-01 8.97E-01 1.00E+00 1.00E+00 

10×10×10 4.31E-09 5.73E-04 9.73E-02 6.78E-01 1.00E+00 

15×15×15 - 4.16E-06 1.42E-02 7.72E-01 9.97E-01 

20×20×20 - 4.44E-09 1.48E-03 8.06E-02 1.01E-01 

 , ,    1.74E-11 1.82E-08 4.45E-08 4.45E-08 4.45E-08 

 

4.2 Example 2 

In this example, different locations of the source points on the above hexahedron 
element are considered.  , ,    represents  , ,    transformation combined 

with the element subdivision technique. The relative errors with different time 
steps are compared in Table 2. 
     Table 2 shows how good results can be obtained by the method based on 
 , ,    transformation considering the different positions of the source points. 

And the proposed method is not sensitive to the position of the source point. 

4.3 Example 3 

To further demonstrate the effectiveness of the proposed method, a more general 
example is considered. A cube is heated on the top face and other faces are 
insulated as shown in Fig.5. The density, heat conductivity and heat capacity 
are 320 /kg m , 2 /( . )kJ m C  and 0.8 /( . )kJ kg C , respectively. The length of the 
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Table 2:  Relative errors for integral I  with different position of the source 
points on hexahedron element with the node coordinates of (-1, -1, 
 -1), (-1, 1, -1), (-1, 1, 1), (-1, -1, 1), (1, -1, -1), (1, 1, -1), (1, 1, 1), 
(1, -1, 1). 

  0.1 0.01 0.001 0.0001 0.00001 

(1.0, 0.0, 0.0) 1.81E-11 6.10E-08 1.12E-07 1.16E-07 1.16E-07 

(1.0, 0.0, 1.0) 2.65E-11 4.20E-08 7.88E-08 8.04E-08 8.04E-08 

(0.9, 0.9, 0.9) 2.16E-11 3.55E-08 8.08E-07 1.13E-07 1.48E-07 

(0.0, 0.0, 0.0) 1.27E-10 7.33E-08 1.44E-07 1.52E-07 1.52E-07 

cube is 1m. A uniform temperature 100 C is imposed suddenly on the top face of 
the cube. The initial temperature of the cube is 0 C and the time step is 0.1h. In 
this application, the variation history of the temperature from 0h to 9.6h at the 
bottom face is concerned. To illustrate the accuracy of the method, numerical 
results are compared with the existing analytical solution to the considered 
problem as shown in Fig. 6. Direct solution means using the Gaussian quadrature 
straightforward for evaluating the domain integrals, and new method represents 
 , ,    transformation combined with the element subdivision technique for 

evaluating the domain integrals. 
     In Fig. 6, it can be seen that evaluating the domain integrals would cause 
instability when the time step is 0.1h while good results can be obtained with our 
method. 

Figure 5: The cube is heated on the top face. 

0100 C
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Figure 6: The temperature at the bottom face. 

5 Conclusions 

A general algorithm for the evaluation of the domain integrals which appear in a 
3D boundary element method for transient heat conduction problems was 
proposed in this paper. Employing the proposed method, the influence of the size 
of the spatial mesh relative to the time step was weakened and the domain integrals 
can be effectively and accurately calculated. Furthermore, an element subdivision 
technique takes into account the position of the source point, the shape of the 
integration element and the relations between the size of element and the time step. 
Thus even the time step is very small, accurate results can still be obtained by our 
method. Numerical examples were presented to verify our method. Results 
demonstrated the accuracy and efficiency of our method. 
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