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Abstract:  In this paper, a time-domain boundary element method formulation for the analysis of 

three-dimensional elastodynamic problems with arbitrary, non-null initial conditions is presented. The 

formulation is based on the convolution quadrature method, by which the numerical stability is 

improved significantly. In order to take into account the non-null initial conditions in this formulation, 

a general method is developed to replace the initial conditions by equivalent pseudo-forces based on 

the pseudo-force method. The original governing equation is transformed into a new one subjected to 

null initial conditions. In the numerical examples, longitudinal vibrations of a free beam and a 

cantilevered beam are considered as the illustrative problems to evaluate the new formulation. Results 

are shown to be in good agreement with the analytical solutions or the finite element method solutions. 

 

Keywords:  time-domain BEM; convolution quadrature method; non-null initial conditions; 

pseudo-force method 

 

1  Introduction 

The boundary element method (BEM) is an efficient numerical technique for solving engineering 

problems (Brebbia, 1978; Cheng and Cheng, 2005), such as Laplace equation, Navier equation, 

Helmholtz equation and linear diffusion-reaction equation (Burton and Miller, 1971; Jaswon and Symm, 

1977; Rizzo, 1967; Rizzo and Shippy, 1970). For transient elastodynamic problems, according to the 

different approximation solution strategies in time space, the BEM generally follows two approaches 

namely, the frequency-domain approaches (Ahmad and Manolis, 1987; Xiao, et al., 2012) and the 

time-domain approaches (Manolis and Beskos, 1988; Yao, 2009). A review about these methods is 

published by Beskos (1987; 1997). 

In this paper, we concern the time-domain method. The implementation of the time-domain approach is 

straightforward. The time-domain formulation is more general and the problem can be solved not only 

for harmonic or periodic load, but also for a much wider range of loads. At the earliest Mansur (1983) 

established the general formulation for the scalar wave equation. Subsequently, Banerjee and Manolis 

et al. (1986) presented the direct BEM formulation for three-dimensional (3D) transient elastodynamic 

analysis, which is the most widely used and classical formulation at present. However, numerical 

results have shown that the standard BEM formulation may be unstable in some applications. This 

phenomenon has been first mentioned in a paper of Cole and Kosloff (1978). An in-depth study on this  
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unstable behavior was carried out by Dominguez and Gallego (1991), and conclusions are summarized 

as: (I) a too small time-step may cause instability in the numerical scheme, (II) while a too large 

time-step may give rise to strong numerical damping in the results. In recent years, several approaches 

have been proposed to improve the stability. Among them, three ways should be mentioned as follows: 

(I) the first one is called ‘linear θ method’ which employs modified numerical time marching 

procedures proposed by Araujo et al. (1999). They achieved more stable results by introducing 

weighting integrals. Other similar and effective schemes include: the ε method, the half-step method 

(Birgisson, et al., 1999), the constant velocity prediction method (Marrero, et al., 2003), and the α-δ 

method (Soares and Mansur, 2007); (II) the second one is called ‘Heaviside fundamental solution 

method’ which employs a modified time dependent fundamental solution proposed by Coda and 

Venturini (1995). Another similar scheme is using a new boundary integral equation (BIE) based on the 

velocity reciprocal theorem to reduce instability in BEM formulations, proposed by Panayiotopoulos 

and Manolis (2011); (III) the third one is called ‘convolution quadrature method’ (CQM) based on the 

theorem proposed by Lubich (1988). This was then developed and applied to time domain BEM 

formulations by Schanz and Antes (1997; Schanz, 2010). In this formulation, the convolution integral is 

numerically approximated by a quadrature formula whose weights are determined by the Laplace 

transformed fundamental solutions and a linear multistep method. Through a comparative numerical 

study of these three groups of methods, the CQM outperforms the other methods in terms of stability 

and accuracy (Li and Zhang, 2014). Besides, a much older paper of Gaul and schanz (1999) compared 

the performances of three approaches, including the calculation in Laplace domain, the calculation of 

convolution analytically in time domain and the calculation based on convolution quadrature method 

(CQM), to calculate the transient response of viscoelastic solids. The numerical results also 

demonstrated that the formulation based on the convolution quadrature is not as sensitive as others in 

terms of time step size. 

It is worth noting that the CQM approach provides the solution directly in the time domain without the 

need of an inverse transformation in spite of employing the frequency domain fundamental solution. 

This BEM formulation was initially developed for elastodynamic problems with null initial conditions 

(Schanz and Antes, 1997). Nonzero initial conditions give rise to domain integrals in time-domain 

integral equation approaches. These terms involve domain integrals without time convolution, so can 

not be integrated numerically approximated by CQM. If we compute these terms directly using domain 

discretization methods and the time-dependent fundamental solutions just like the conventional 

time-domain BEM, judgment of wave fronts and spherical surface integrals are required because that 

Heaviside functions and Dirac delta functions are included in the time-dependent fundamental solutions. 

This will lead to complicate geometry operations, especially for complicate structures. In order to 

overcome this limitation, a general procedure is proposed in this paper to replace the initial conditions 

by equivalent pseudo-forces based on the pseudo-force method. The pseudo-force method was already 

successfully employed in the frequency-domain analysis and the CQM-based time-domain analysis of 

2D scalar wave propagation problems (Abreu, et al. 2006; Mansur, et al., 2004). It was also employed 

in a fast Fourier transform-based spectral element method for the linear continuum dynamic systems 

subjected to non-null initial conditions by Lee and Cho (2008). To the authors’ best knowledge, the 

CQM-based time-domain BEM has not yet been developed for the analysis of 3D elastodynamic 

problems with non-null initial conditions.  

In the following Section 2, we will develop a general method to transform the original governing 
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equations of linear elastic dynamic system subjected to arbitrary, non-null initial conditions into a new 

set of governing equations with completely null initial conditions based on the pseudo-force method. In 

our method, the whole transformation process is based on the governing equations. Thus, this method 

can also be applied to the conventional time-domain BEM formulations, which employ the 

time-dependent fundamental solutions, to avoid spherical surface integrals of the terms involved initial 

conditions. After that, a brief introduction to the CQM-based time-domain BEM formulation and its 

numerical implementation are presented in Section 3. To verify the applicability of the proposed 

method, longitudinal vibration analyses of a slender free beam and a cantilevered beam are considered 

as the illustrative examples in Section 4. And finally, the paper ends with conclusions in Section 5. 

2  The transformation of initial conditions by pseudo-force method 

The pseudo-force method was initially proposed by Mansur et al. (2004) and developed by Abreu et al. 

(2006) both for 2D scalar wave propagation problems. Now we develop it to deal with the non-zero 

initial conditions for 3D elastodynamic problems but not directly. The basic idea of the pseudo-force 

method is transforming the contribution of initial conditions to equivalent body forces. Although the 

methodology is quite general, the transformation procedure is somewhat different from that of 2D case 

because the governing equation of 3D elastodynamics is more complicate. Furthermore, a new 

governing equation with zero initial conditions will be deduced to help the transformation procedure 

easier to understand in this section, which is not presented in the original paper of 2D case.  

2.1  The transformation of initial conditions for the general case 

The governing equation of elastodynamic problems presented here is corresponding to small 

displacement theory for homogeneous, isotropic, linearly elastic materials. The displacement equations 

of motion can be written as 

, ,( ) ( , ) ( , ) ( , ) ( , )j ij i jj i iG u q t Gu q t b q t u q t                                               (1) 

where , 1, 2,3i j  , iu  is the displacement component, ib  represents the body force per mass, ρ is 

the medium density and iu  is the second derivative of displacement with respect to time t, λ and G are 

the Lame constants given by 

(1 )(1 2 )

E


 


 
 and 

2(1 )

E
G





                                                  (2) 

in which E and ν represent Young's modulus and Poisson's ratio respectively.  

Eq. (1) satisfies the boundary conditions 

( , ) ( , ),

( , ) ( , ) ( ) ( , ),

ui
i i

pi
i ij j i

u q t u q t q S

p q t q t n q p q t q S

  

   
                                             (3) 

in which ij  and ip  are the stress components and boundary traction respectively, jn is the normal 

vector to boundary S at point q, iu  and ip  are prescribed boundary displacement and traction on 

uiS  and piS , respectively, and the non-zero initial conditions 

0

0

( ,0) ( ),

( ,0) ( ),

i i

i i

u q u q q V

u q q q V

  

  
                                                           (4) 

in which iu  is the first derivative of displacement with respect to time. 
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Firstly, on the basis of the superposition principle valid for linear time-invariant systems, we can 

assume the complete solution of Eq. (1) can be computed by adding the initial displacement to the 

displacement increment, just as 

( , ) ( ,0) ( , )i i iu q t u q u q t                                                             (5) 

Substituting Eq. (5) into Eq. (1) gives 

, , , ,( ) ( , ) ( , ) [( ) ( ,0) ( ,0)] ( , ) ( , )j ij i jj j ij i jj i iG u q t G u q t G u q Gu q b q t u q t                       (6) 

We can define the pseudo-force per mass for the initial displacement as 

0
, ,

1
( , ) [( ) ( ,0) ( ,0)] ( 0)u

i j ij i jjf q t G u q Gu q H t


                                          (7) 

where ( 0)H t   represents the Heaviside function. It is different from that in 2D wave propagation 

problems. It should be mentioned that this pseudo-force is divided by the density in order to preserve 

uniformity with the definition of body force in the governing equation. 

Then, based on the momentum principle “impulse=momentum change”, the contribution of the change 

in momentum from t=0- to t=0 is equivalent to that of the impulse force 0 ( , )v
if q t  per mass, i.e. 

0
0

0
( , ) ( ) [ ( ,0) ( ,0 )] ( )v

i i iV V
f q t dtdV q u q u q dV q 



                                         (8) 

in which, ( ,0 ) 0iu q   . It means the system is initially at rest until an impulse force is applied. There 

is no instantaneous change in the displacement because the time duration is too short for displacement 

to develop. 

By substituting the initial velocity in Eq. (4) into the Eq. (8), we can obtain the pseudo-force for initial 

velocity just as 

0 0( , ) ( ) ( )v
i if q t v q t                                                                (9) 

in which, ( )t  is the Dirac delta function centered at time t=0 and its value is zero at all times other 

than zero. This is same as the pseudo-force for initial velocity in 2D case (Abreu, et al. 2006) although 

the formulations are different. A discrete time sampling of the pseudo-force will be presented in the 

next sub-section. 

Finally, using the pseudo-forces in Eq. (7) and Eq. (9), the Eq. (1) with non-zero initial conditions can 

be transformed into a new set of governing equation with respect to the displacement increment 

( , )iu q t  as 

0 0
, ,( ) ( , ) ( , ) [ ( , ) ( , ) ( , )] ( , )u v

j ij i jj i i i iG u q t G u q t b q t f q t f q t u q t                            (10) 

with completely null initial conditions 

( ,0) 0,

( ,0) 0,

i

i

u q q V

u q q V

   

   
                                                            (11) 

and new boundary conditions 

( , ) ( , ) ( ,0),

( , ) ( , ) ( ,0),

ui
i i i

pi
i i i

u q t u q t u q q S

p q t p q t p q q S

    

    
                                               (12) 

The complete solution of the original governing Eq. (1) can be obtained by first solving the 

transformed Eq. (10) with completely null initial conditions by considering the pseudo-forces 
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0 ( , )u
if q t  and 0 ( , )v

if q t  as the effective external forces, and then adding the result ( , )iu q t  to the 

initial displacement ( ,0)iu q . 

2.2  Calculation of the pseudo-forces 

Before solving the Eq. (10), one must find the nodal values of the pseudo-force 0 ( , )u
if q t  and 

0 ( , )v
if q t  at all domain points. When t>0, we can simplify the 0 ( , )u

if q t  in Eq. (7) into 

0
, ,

1
( ) [( ) ( ,0) ( ,0)]u

i j ij i jjf q G u q Gu q


                                                (13) 

As mentioned in the paper of Mansur et al. (2004), the pseudo-force 0 ( )u
if q  can be computed through 

two ways: 

I. When the analytical expression for ( ,0)iu q  is available, it is sufficient to compute the Eq. (13) 

analytically to obtain 0 ( )u
if q .  

II. When the values of ( ,0)iu q  can not be expressed analytically, we can compute 0 ( )u
if q  

numerically by solving the following well-known Navier equation 

0
, ,( ) ( ,0) ( ,0) [ ( )] 0u

j ij i jj iG u q Gu q f q                                               (14) 

which is the governing equation of elastostatics problem. In Eq. (14), the displacement ( ,0)iu q  is 

introduced as the input data and the body force 0 ( )u
if q  represents the unknown variable. Numerical 

implementation in detail can refer to the reference (Brebbia, 1978). However, for 2D scalar wave 

propagation problems, it will become a Poisson equation. 

If we impose the effect of the impulse pseudo-force 0 0( , ) ( ) ( )v
i if q t v q t  to a short time duration 

[0, ]t  averagely, the equivalent pseudo-force for initial velocity will become 

0 0( ) ( ) /v
i if q v q t                                                                  (15) 

which can be computed easily no matter the values of 0 ( )iv q  can be expressed analytically or not. 

After computing all nodal values of the pseudo-force 0 ( , )u
if q t  and 0 ( , )v

if q t , we can employ the 

CQM-based BEM to solve the new governing equation (10). 

3  The CQM-based BEM formulation and its numerical implementation 

The time-domain boundary integral formulation corresponding to the governing Eq. (10) can be 

expressed as (Manolis and Beskos, 1988): 
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0 0

0

0 0

0

0

( ) ( , ) ( , ; ) ( , ) ( ) ( , ; ) ( , ) ( )

( , ; ) ( , ) ( ) ( , ; ) ( , ) ( )

( , ; ) ( , ) ( )

t t
s s

ij j ij j ij j

s s

t t
s s v
ij j ij j

V V

t
s u
ij j

V

C p u p t u p q t p q d dS q p p q t u q d dS q

u p q t b q d dV q u p q t f q d dV q

u p q t f q d dV q

     

       

   

      

   

 

   

   

 

       (16) 

where / 2ij ijC   when the source point p belongs to smooth surfaces, ij ijC   when p in domain 

( 1ij   when i j , otherwise 0ij  ), ( , ; )s
iju p q t   and ( , ; )s

ijp p q t   are time-dependent 

fundamental solutions, represent the displacement and traction in direction j at field point q and at time 

t due to a unit concentrated load at source point p in direction i and at time τ , respectively. 

Unlike dealing with the time integration analytically in the conventional time-domain BEM, the 

convolution between the fundamental solutions and the corresponding nodal values in Eq. (16) is 

performed numerically in the CQM-based BEM. If we discretize the time interval [0, ]t  into M time 

steps of duration t , the discretized time nodal mt m t  , where m=1,2,…,M. Then, apply the CQM 

procedure and the pseudo-forces 0 ( )u
if q  in Eq. (13) and 0 ( )v

if q  in Eq. (15) to Eq. (16), the 

following representation arises 

0 0

0

0

0

0

ˆ ˆ( ) ( , ) ( , , ) ( , ) ( ) ( , , ) ( , ) ( )

ˆ ˆ( , , ) ( , ) ( ) ( , , ) ( ) ( )

ˆ( , , ) ( ) ( )

m m
s s

ij j m a ij j m a ij j
a as s

m
s s v

m a ij j m ij j
a V V

m
s u

m a ij j
a V

C p u p m t u p t p q a t ds q p p t u q a t ds q

u p t b q a t dV q u p t f q dV q

u p t f q dV q

 

   

 

 
 







         

    

 

  

 



  (17) 

In this formulation, the effect of the pseudo-force 0 0( , ) ( ) ( )v
i if q t v q t  is imposed to the first time 

step [0, ]t  averagely, being null at the subsequent ones. 

For more details of the derivation process of CQM, please refer to Reference (Schanz and Antes, 1997). 

The quadrature weights in the above formulation are 

2
21

1

0

( )
ˆ ˆ( , , ) [ ( , , ) ]

1

il
m M M ilm

s s M
m ij ij

l

e
u p t u p q e

M t





  





 
 

 
                                    (18) 

2
21

1

0

( )
ˆ ˆ( , , ) [ ( , , ) ]

1

il
m M M ilm

s s M
m ij ij

l

e
p p t p p q e

M t





  





 
 

 
                                    (19) 

Here, ( )z  (where 
2

1
il

Mz e


  ) is the quotient of the characteristic polynomials of a linear multistep 

method according to Lubich (1988), for example, the backward differentiation formula of second 

order 2( ) 1.5 2 0.5z z z    . If an error ε ( -1010   according to Abreu et al. (2006)) is assumed in the 

computation of 
( )

ˆ ( , , )s
ij

z
u p q

t




, the choice of 1M    yields an error of order ( ) . Note that 
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the calculation of the quadrature weights (19) and (20) is based on the Laplace transformed 

fundamental solutions ˆ ( , , )s
iju p q s  and ˆ ( , , )s

ijp p q s , see Reference (Manolis and Beskos, 1988). 

In order to treat the corners of a body surfaces in a simple manner, we adopted discontinuous elements 

to discretize the boundary and domain of the model. After discretizing all faces with BN discontinuous 

elements and domain with DN discontinuous cells, integrals in Eq. (17) will be carried out over all 

elements and cells. The discretized version of Eq. (17) for each source point qk can be written as: 

1 1

0 0 0 0

1 1
0 0

0 0 0

( ) ( ) ( ) ( , ) ( ) ( , )

( ( ) ( )) ( , ) ( ) ( , )

m BN m BN
m a a a a

ij k j k j n ij k n j n ij k n
a n a n

m DN DN
a u a v m
j n j n ij k n j n ij k n

a n n

C q u q p q G q q u q H q q

b q f q F q q f q F q q 

 

   

 

  

    

  

  

  
              (20) 

It should be mentioned that in order to reduce the geometric error, the boundary face method (BFM) 

which is proposed by Zhang et al. (2009), is employed in the numerical implementation in this paper. 

The BFM is implemented directly based on the boundary representation data structure (B-rep) that is 

used in most CAD packages for geometry modeling. Each bounding surface of geometry model is 

represented as parametric form by the geometric map between the parametric space and the physical 

space. Both boundary integration and variable approximation are performed in the parametric space. 

The integrand quantities are calculated directly from the faces rather than from elements, and thus 

geometric error will be reduced significantly. This method has been successfully used in the 

calculations of 3D potential problems (Qin, et al., 2010), elasticity problems (Huang, et al., 2012; Zhou, 

et al., 2012), transient heat conduction problems (Guo, et al., 2013; Zhou, et al., 2013;), acoustic 

problems (Wang, et al., 2013) and buckling problems (Li, et al., 2014).  

4  Numerical examples 

Two numerical applications, e.g. longitudinal vibrations of a free beam and a cantilevered beam, are 

analyzed next in order to verify the accuracy of the numerical results provided by the formulation 

presented in this work. Both beams have the same geometric and material properties: the length 

8.0L m  and the width and height 2.0W H m   as shown in Fig. 1, the Young’s modulus 

5 21.1 10 /E N m   and the mass density 32.0 /kg m  . By setting the Poisson’s ratio 0.0  , the 

3D problem is reduced to a 1D problem, of which the analytical solution is available (Graff, 1975). 
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Figure 1: Geometry of the beam and the boundary conditions: (a) free beam; (b) cantilevered       

beam. 

The dimensionless parameter 1 /c t d   , where d is the characteristic element length, was used to 

control time-step length. In the traditional time-domain BEM, it is suggested that β>0.5 because a too 

small time-step may cause instability in the numerical scheme. But in the CQM-based BEM, much 

smaller value of β can be adopted and will not induce the instability. In this two examples, we adopt 

β=0.2 to achieve relatively more accurate results. The beam is discretized into 72 linear quadrilateral 

elements and 32 linear hexahedral elements as shown in Fig. 2(a). To treat the corners of a body 

surfaces in a simple manner, we adopted discontinuous elements as shown in Fig. 2(b) and 2(c). The 

nodes on the face edge are shrunk to inside the face or the domain by a parameter λ, which is defined 

by /a b  , where b stands for the length of the element, a the distance of the node to the edge. It was 

observed that the best value for λ is 0.25 for linear quadrilateral element, and 0.167 for quadratic 

quadrilateral element. 

 

Figure 2: Discretized model and the discontinuous elements: (a) discretized model; (b) linear 

discontinuous quadrilateral element; (c) linear discontinuous hexahedral element. 
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4.1  longitudinal vibrations of a free beam under initial conditions 

This example considers a slender beam free at two ends. Two analyses are performed: in the first 

analysis initial displacement is applied as 

0 ( ) 0.005 0.02, (0 8)u q x x                                                      (21) 

and in the second analysis initial velocity is applied as 

0 ( ) 2.5 10, (0 8)v q x x                                                          (22) 

For the case of 0 ( )u x ax b   and 0 0( ) vv x c x d  , the analytical solution of one-dimensional rod is 

given by  
2

0

2 2 3 3
1,3,5...

44
( , ) ( cos sin ) cosv

n

c lal cn cn n x
u x t t t

l l ln cn

  

 






                                  (23) 

in which l represents the length of rod. For detail derivation, please refer to (Graff, 1975). 

To demonstrate the accuracy of the CQM-based formulation, in Fig. 3 and Fig. 4 the displacement 

responses at point A(8,1,1) due to the initial displacement filed and due to the initial velocity filed, 

respectively, are compared with analytical solutions. One can observe that the numerical responses 

present a good agreement with the analytical ones initially, but the accuracy of results get worse with 

the increase in time. This is because the information from all earlier time steps must be used in 

time-domain BEM, the errors of numerical integration will accumulate at later time steps. To reduce the 

numerical damping, we can improve the precision of numerical integration, for examples, use an 

inadequate number of sub-elements or Gauss points and use high order interpolation functions. 

Recently, a Runge-Kutta convolution quadrature method is presented in Reference (Banjai, et al., 2012), 

which is preferable with regard to less numerical oscillations in the solution and better representation of 

wave fronts. It will be very helpful to improve the accuracy of results. 

 

Figure 3: Displacement responses at point A of the free beam under initial displacement. 
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Figure 4: Displacement responses at point A of the free beam under initial velocity. 

4.2  longitudinal vibrations of a cantilevered beam under initial conditions 

In this case, a cantilevered beam fixed at one end (x=0) and free at the other end (x=8) is considered. 

Two analyses were performed. The first analyses is carried out by assuming initial conditions are 

0

0

( ) 0.005 , (0 8)

( ) 2.5, (0 8)

u q x x

v q x

  

  
                                                        (24) 

For the case of 0 ( )u x ax b   and 0 0( ) vv x c x d  , the analytical solution of one-dimensional rod is 

given by 
1 1

02 2
2 2

1,3,5...

24 2 8
( , ) { [( 1) ]cos [( 1) ]sin } sin

2 2 2

n n
v

n

c lal cn l cn n x
u x t b t d t

n n l n l lcn

  

  

 



              (25) 

in which l represents the length of rod, /c E   is the wave propagation velocity.  

The displacement responses at point A(8,1,1) and point B(4,1,1) obtained by the present CQM-based 

BEM are compared with analytical solutions in Fig. 5 and Fig. 6 respectively. The traction response at 

the fixed end of beam is compared with analytical solutions in Fig. 7. The numerical results are in a 

good agreement with the analytical ones, demonstrating the accuracy of the proposed formulation.  
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Figure 5: Displacement responses at point A of the cantilevered beam under initial conditions. 

 

Figure 6: Displacement responses at point B of the cantilevered beam under initial conditions. 
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Figure 7: Traction responses at the fixed end of the cantilevered beam under initial conditions. 

In the previous analyses, the pseudo-forces which account for initial displacements contribution are 

computed analytically because the analytical expression of 0 ( )u q  is available. But in the second 

analysis of this sub-section, the cantilevered beam is subjected to a non-uniform loading 

( 8) 500 , (0 2)p x z z                                                        (26) 

at the free end as shown in Fig. 8. After the status of the beam is stable, release the external force and 

observe the transient dynamic response of the beam. That is to say, the initial displacement in this 

analysis is due to the elastic deformation. In this case, the pseudo-forces which account for initial 

displacements contribution are computed numerically according to the procedure described in the 

Section 2. 

 

Figure 8: Cantilevered beam under a non-uniform loading. 

In Fig. 9, the displacement response of x direction at point A(8,1,1) obtained by the CQM-based BEM 

is compared with the results provided by finite element method (FEM) software. Traction response of x 
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direction at point C(0,1,1) is depicted in Fig. 10. Again, comparison is made with the results provided 

by the FEM software. The results are in a good agreement, demonstrating the applicability of the 

proposed method again. 

 

Figure 9: Displacement response of x direction at point A of the cantilevered beam under 

non-analytical initial displacement field. 

 

Figure 10: Traction response of x direction at point C of the cantilevered beam under non-analytical 



15 
 

initial displacement field. 

5  Conclusions 

In this paper, a general method is presented to deal with non-null initial conditions in the governing 

equation for 3D elastodynamic problems. This method is developed from the pseudo-force method 

which is proposed by Mansur et al. (2004) for 2D scalar wave propagation problems but not directly. In 

this method, the initial conditions are transformed into equivalent pseudo-forces based on the linearity 

of the problem and the momentum principle. The basic steps for the transformation of the initial 

conditions, related to the displacement and its time derivative, are presented and discussed in detail. A 

new set of equations of motion subjected to completely null initial conditions is obtained finally. The 

CQM-based BEM formulation is applied to compute dynamic responses numerically. To evaluate the 

proposed method, longitudinal vibrations of a free beam and a cantilevered beam are analyzed. 

Numerical results are compared with the analytical solutions or the FEM solutions. They are in a good 

agreement, demonstrating the applicability of this method. Besides, the whole transformation process is 

based on the governing equations. Therefore, this method can also be applied to the traditional 

time-domain BEM formulation and other numerical method. 
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