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Abstract

Carbon nanotubes (CNTSs) are predicted to possess superior heat conductivity, which makes the CNTs promising in development of
fundamentally new composite material. With the current advancement in nanotechnology, it is possible to design materials with desired
properties for specific applications. On the other hand, the overall properties of CNT composites are usually evaluated using a
representative volume element (RVE) with a number of CNTs embedded. For realistic modeling, an RVE including a large number of
CNTs, for example, tens or hundreds, is necessary. However, analysis of such an RVE using standard numerical methods faces two
severe difficulties: discretization of the geometry into elements and the very large computational scale. In this paper, the first difficulty is
alleviated by developing the hybrid boundary node method (HdBNM), which is a boundary-type meshless method. To overcome the
second difficulty, a simplified mathematical model for thermal analysis of CNT analysis is first proposed, by which the size of the linear
system can be reduced by nearly half. Then, the HIBNM is combined with the Fast Multipole Method (FMM) based on the model to
further reduce the computational scale. A variety of RVEs containing different numbers of CNTs, from small to large scales, have been
studied in an attempt to investigate the influence of CNT length, distribution, orientation and volume fraction on the overall thermal

properties of the composites. Insights have been gained into the thermal behavior of the CNT composite material.

© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Since their discovery over a decade ago, carbon
nanotubes (CNT) have been attracting considerable atten-
tions both from scientists and engineers. Due to their near-
perfect nanostructure, which can be thought of as a
hexagonal sheet of carbon atoms rolled into a seamless
cylinder with two semi-sphere caps at each end, the CNTs
are predicted to possess exceptional physical properties,
such as superior heat and electrical conductivities, as well
as high stiffness, strength and resilience [1-5]. A few
experiments have been reported on mats of compressed
ropes of CNTs [6,7]. By assuming that both thermal and
electrical conductivities follow the same rules for transport,
values of thermal conductivity of CNTs, ranging from 1750
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to 5850 W/m K, have been extrapolated from experimental
measurement on mats of nanotube ropes. The direct
measurements of individual nanotube were also performed
using MEMS measurement technology [8]. Following those
experiments, several preliminary molecular dynamics (MD)
simulations [9—11] of the thermal conductivity gave even
higher values, i.e., 6600 W/m K at 300 K [9]. Although the
estimated values of thermal conductivity were different
from each other, it is generally accepted that the CNTs
possess excellent heat conductivity, comparable or even
higher than diamond. The latter has been considered so far
as the best heat conductor.

These remarkable properties may make CNTs ideal
for a wide range of technological applications. One of
the most intriguing applications is the use of CNTs,
as small volume fraction filler, in nanotube-reinforced
polymers. CNT-based composites offer significant
improvements to structural properties over their base
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polymers. It has been demonstrated that with only 1%
(weight fraction) of CNTs added to a matrix material, the
stiffness of a resulting composite can increase as high as
36-42% and the tensile strength up to 25% [12]. In the
work of Biercuk et al. [13], samples of industrial epoxy
loaded with 1 wt% SWNTs showed a 70% increase in heat
conductivity at 40K, and rose to 125% at room
temperature.

Numerical simulations can help to understand the
relationship between the geometrical characteristic (e.g.
nanotube orientation) and the properties of the nanocom-
posites. This will allow the determination and optimization
of different processing method to manufacture the
nanocomposite materials. At the nanoscale level, atomistic
or MD somehow appears a “‘natural” simulation method,
and has provided abundant results helping in under-
standing their thermal, mechanical and electrical beha-
viors. However, due to the limitations in current computing
power, these simulations are so far limited to single pure
CNT or very small scales for CNT-composite, for example,
an representative volume element (RVE) including single
short CNT, only. To study the influence of CNTs
distribution on the effective properties of the composite,
modeling of an RVE including a large number of CNTs
that are randomly distributed and oriented is necessary.
This is because, in a real CNT-composite, the CNTs are
not uniform in size and shape. They can be straight, twisted
and curled or in the form of ropes and their distribution
and orientation in the matrix can be nonuniform,
unidirectional or random. Even with the most superior
computer resources available in the world, computation of
such an RVE by MD is almost impossible. Liu et al. [14]
have demonstrated that the use of atomistic or MD
simulations is inevitable for the analysis of such nano-
materials in order to study the local load transfers,
interface properties, or failure modes at the nanoscale.
However, for the global analysis studying the effects of
CNTs configuration on the overall properties of the
material, they suggested a continuum model, in which the
physical behavior of the composite is governed by
continuum equations such as Laplace’s equation for
thermal property and Lame-Navier equations for elastic
properties. Sohlberg et al. [15] have discussed the applica-
tion of continuum mechanics to nanostructural engineer-
ing, and demonstrated by numerical results that methods
of continuum mechanics provide a viable and efficient
alternative to the standard methods for vibration analysis
of nanotubes.

The aim of this study is to gain insight into the thermal
properties of CNT-based composites through numerical
simulation based on continuum formulation. The effective
heat conductivity of CNT-based composites is evaluated
using a RVE based on 3-D potential theory. In the RVE, a
single/multiple nanotube(s) with surrounding matrix ma-
terial are modeled, with properly applied boundary and
interface conditions to account for the effects of the
surrounding materials.

The most critical part of any numerical analysis is
the discretization of domain of interest. If the domain
contains thin-walled structures of complex geometry
(e.g. twisted, curved, randomly distributed), the task
of its proper/high quality meshing is always challenging.
An implementation of Finite Element Method (FEM) to
the modeling of such types of structures results in
extremely large number of elements, due to obvious
restriction of element connectivity and requirements of
appropriate values of their aspect ratios. The Boundary
Element Method (BEM) based models partially alleviate
the problem, as the discretization of boundary surfaces
(instead of volumes) is required, only. However, still in
many cases the high quality boundary elements may
be difficult and cumbersome to obtain. To overcome
meshing problems, a meshless method can be used, for
example, the hybrid boundary node method (HdIBNM)
[16-20] or others [21-23]. By combining a modified
functional with the moving least squares (MLS) approx-
imation, the HABNM is a truly meshless, boundary-only
method. The HABNM requires only the discrete nodes
located on the surface of the domain and, hence,
considerably simplifies the discretization task and leads to
substantial resources savings.

Another difficulty in the analysis is that the com-
putational scale may be extremely large exceeding the
current computer power. Due to the very thin and slender
structure of the CNTs, a large number of nodes are
required to discretize them in order to capture the steep
gradients. Moreover, in a multi-domain solver, at each
node on the interface of a CNT with the host polymer,
both temperature and normal flux are unknown. This
situation considerably increases the total degrees of free-
dom in the overall system of equations. Our preliminary
studies have shown that temperatures within the entire
CNT are almost uniform due to the huge difference of heat
conductivity between the CNT and the host polymer [24].
Based on this observation, we have proposed a simplified
mathematical model, where the CNTs are considered as
heat superconductors and uniform temperature dis-
tributions within the entire body of each CNT assumed
[25]. As a result, the total number of degrees of freedom is
reduced by nearly half, and thus increases the number of
CNTs contained in an RVE that can be analyzed within
available computer resources. The simplified model has
been rigorously tested and validated using benchmark
examples.

Nevertheless, even with the simplified model, both the
memory requirements and the computational scale are still
of O(N?) when an iterative solver is applied. Under the use
of a direct solver, the Gaussian elimination, for example,
the computational scale is even higher up to O(N?), where
N stands for the total number of degrees of freedom. To
perform analysis of a real-world RVE model, an efficient
technique further reducing computational requirements is
necessary. The method of choice is Fast Multipole Method
(FMM).
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The FMM was introduced by Rokhlin [26], and
developed by Greengard [27-29] as an algorithm for the
rapid evaluation of Coulombic interactions in a large-scale
ensemble of particles. In their method, multipole moments
are used to represent distant particle groups, a local
expansion to evaluate the contribution from distant
particles in the form of a series, and a hierarchical
decomposition of the domain to carry out efficient and
systematic grouping of the particles. The FMM reduces
both memory size and computational scale from O(N?) to
O(N), thus enabling scientific and engineering computa-
tions that were previously impossible.

The FMM has been applied to a variety of computation
methods. Applying FMM to accelerate BEM computation
has been investigated by many researchers [30-34], and the
computational costs of the fast BEM, including memory
and CPU time, have been successfully reduced to O(N).
Recently, we have combined the FMM with the HIBNM
[35], and derived an efficient algorithm in terms of both
computer and human-labor costs.

In this paper, we first combine the HdBNM with a
multi-domain solver and apply the combined app-
roach to perform some preliminary computations and
investigate the influences of the CNT length and dis-
persion on the effective thermal properties of the com-
posites. Then we present the full formulation of the
simplified mathematical model for simulation of thermal
behavior of CNT-based composites. The FMM techniques
are used to accelerate the solution process of the
established linear system of equations. The above algo-
rithms and mathematical model are implemented into a
computer code written in C+ + and employed for
advanced simulations, where the RVEs contain a number
of CNTs with a variety of lengths, shapes, distribution and
orientation. An effective shape of the CNT that signifi-
cantly increases the effective heat conductivity of the
composites is found. Finally, we perform some sensitive
studies investigating the impact of CNT’s curvature upon
the effectiveness of reinforcement. It is also demonstrated
that the HdBNM accelerated with the FMM is very
promising for large-scale analysis of fiber-reinforced
composites.

2. Multi-domain modeling of CNT composites

A multi-domain formulation is a natural way to model
inclusion problems. However, thermal analysis of the CNT
composites using standard numerical solution techniques
like FEM or BEM faces severe difficulties in discretization
of the domain geometry. In this work, this difficulty is
alleviated by employing HdBNM, which is a meshless,
boundary-only method and requires only discrete nodes
located on the surface of the domain and its parametric
representation. As the parametric representation of created
geometry is used in all CAD packages, it should be possible
to exploit their Open Architecture features and handle
truly arbitrary geometry. In this section, formulations

for the multi-domain HABNM are derived. For full details
of single domain HABNM for 3-D potential problems refer
to [20].

Suppose that n CNTs are distributed in a polymer
matrix that makes an RVE. It is assumed that both the
CNTs and the matrix in the RVE are continua of linear,
isotropic and homogenous materials with given heat
conductivities. A steady-state heat conduction problem
governed by Laplace’s equation with proper boundary
conditions is considered for each CNT domain and the
matrix domain.

The HABNM is based on a modified variational
principle, in which there are three independent variables,
namely:

e temperature within the domain, ¢;
e boundary temperature, ¢;
® boundary normal heat flux, §.

Suppose that N nodes are randomly distributed on the
bounding surface of a single domain. The domain
temperature is approximated using fundamental solutions
as follows:

N
p=> ¢ix (1)
I=1

and hence at a boundary point, the normal heat flux is
given by

N K
g= xS Ly, @

where ¢7 is the fundamental solution with the source
at a node s;, k is the heat conductivity and x; are un-
known parameters. For 3-D steady-state heat con-
duction problems, the fundamental solution can be
written as

1 1
S
- _ 3

o= 4nr(Q,sr)’ )
where Q is a field point; r(Q, s;) is the distance between Q
and s;.

The boundary temperature and normal heat flux are
interpolated by the MLS [20]:

N
Bs) = 01()¢; )
=1
and
N
gs) = d(s)g;. )
=1

In the foregoing equations, @(s) is the shape function of
MLS approximation; ¢; and ¢, are nodal values of
temperature and normal flux, respectively.
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For the polymer domain, the following set of HABNM
equations can be written:

(U Uy - UG (X6 Hi¢,
v, U5, ... U ||« H§

= , (6)
U, U U HY$,
Voo Voo o Vo | (X0 Hi,
Vie Vi - Vi ||~ H'§;

= , (7)
_Vﬁo Vie o Vi Lo Hiq,

where superscript p represents the polymer; subscript 0
stands for the quantities exclusively associated with
the polymer domain, and k, k=1,...,n, for the quan-
tities associated with the interface between the kth CNT
and the polymer. The sub-matrices [U], [V] and [H] are
given as

Un = [ die0ur. ®)
Vir= [ dius@nr. ©)
iy = |, @itsw,Qr. (10)

s

where I’ { is a regularly shaped local region around a given
node sy, v, is a weight function and s is a field point on the
boundary.

Similarly, for the kth CNT domain, we have

[Us, UG [ x5 H by

vl Ut (= g an
1 12 l

and

r Vé)k() V(t)k fk H(t)k ~lk

v v T\ ma | 12

where the superscript #, stands for the kth CNT and the
subscript i indicates the quantities associated with the
interface between the kth CNT and the matrix.

At the interface between a CNT and the polymer
both the temperature and heat fluxes must be continuous,
ie.

() = {o}) (13)
and
4} = —{q"}. (14)

Using the continuity conditions, Eqgs. (6), (7), (11) and
(12) can be assembled into the following expression:

A A0 0 . AL 00
v, Uy, -U}j -Uy -~ Uy 0 0
Vie Vi Vi Vi o Vi 0 0
0 0 A AL, - 0 0 0
Uy U, 0 0 oo, Uy —Ug
Vio Vi 0 0 eV Vi Vi
o 0 o0 0 0 An AL
() (e ‘
xf 0
x!! 0
x; H{d|
X< =9 , (15)
x) 0
x 0
xg Hydy

where [4,], k=0,1,...,nand i, and {dj} (* represents p
or t;) are formed by merging [Uy,] and [V, ], and {¢0} and
{go} according the known boundary conditions, respec-
tively. For degrees of freedom with prescribed temperature,
the related elements in {¢0} are selected for {d;}, and the
corresponding rows of in [Uf,] are selected for [4g];
otherwise, elements in {g;} are selected for {dj}, and the
corresponding rows in [V, ] are selected for [A4g,].

The set of Eq. (15) is solved for the unknown parameters
x by the standard Gauss climination solver, and then, by
back-substitution into Egs. (6), (7), (11) and (12), the
boundary unknowns are obtained either on the interfaces
or the external boundary surfaces. As demonstrated, the
multi-domain HdBNM is a boundary-only meshless
approach. No boundary elements are used for either
interpolation or integration purposes. Therefore, it may
alleviate the discretization difficulty to a large extent.

As a preliminary step of our study, we have employed
the above multi-domain model to study the temperature
distribution and heat flux concentration within or near the
CNT by a RVE including single straight and sinusoidal
CNT [24]. The concept of RVE has been widely used for
conventional fiber-reinforced composites at the micro-scale
[36]. Chen and Liu [37] applied it for the study of the CNT-
based composites for their mechanical properties. Fisher
et al. [38,39] analyzed the effects of the CNT waviness on
the effective Young’s modulus of the composites using an
RVE containing a curved CNT. We have also studied the
impact of the CNTs alignment on the equivalent thermal
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properties [40]. It has been demonstrated that the
equivalent thermal properties are strongly dependent on
the CNTs alignment.

3. Simplified mathematical model for CNT composites

The computations using the multi-domain model have
provided us some insights into the thermal properties of the
composites. However, these computations are limited to
relatively small scales, as only single or several but shorter
CNTs were considered. When the number of CNTs
included in the RVE is increased, the lengths of CNTs
are reduced. This is because the total number of degrees of
freedom of a problem that can be solved by the standard
multi-domain solver within the available computer re-
sources is limited to about 5000. In order to reduce the size
scale of the linear system, we have proposed a simplified
mathematical model for simulation of the CNT composites
[26], by which the total number of degrees of freedom is
reduced by nearly half. For the sake of completeness, the
formulation development of this model is outlined in this
section.

As demonstrated in [24,25], the unusually high heat
conductivity of the CNTs in comparison with the polymer
makes the temperature distribution within an individual
CNT almost uniform. This feature allows us to simplify the
modeling of the CNT-based composites. In the simplified
model, only single domain, namely the polymer matrix is
modeled. Each CNT is treated as a heat superconductor
with one constant temperature constrained at its surface. A
similar assumption can be found in a rigid-line inclusion
model [41].

Using the HIBNM, the same Egs. (6) and (7) in Section
2 for the polymer domain can be obtained. By combining
Eqgs. (6) and (7), we get

Ao Aot - Aog X0 Hod,

Uop Uy - Uy X Hi¢,
=q. . (16)

UnO Unl e Unn Xn Hnd’\)n
where each row of sub-matrices [Aor], k=0,1,...,n, is

supplied identically from that in [Ug] or [V k] according to
the boundary condition at the corresponding node, and the
corresponding term of {dy} comes from {¢,} or {§,}-

Further, suppose that my nodes are located at the
interface of kth nanotube with the polymer, and a constant
temperature qbff is prescribed, namely

(o) = (1),0F, (17)

where {(;Sk} are the nodal values of temperature at the
interface; {1}, is a column vector of m; dimensions with all
the elements equal to 1.

On the other hand, the law of conservation of energy
states that, for steady-state heat conduction, the rate of
thermal energy flowing into a CNT must equal that flowing

out. Thus, the following relationship can be imposed on the
surface of the kth CNT:

/ gdl’ =0, (18)
Ci

where Cj represents the outer surface of the kth CNT.
Substituting Eq. (2) into (18) and omitting the common
factor x, we get

N s
Z/ by dI'x; = 0. (19)
= Cy an

In Eq. (19), Cy is a closed surface. The following integral
identity holds [42]

Loy 1,
dr =

/Ck on {0,

Inserting Eq. (17) into Eq. (16) and appending Eq. (19),

we obtain the final set of algebraic equations system which
can uniquely determine the unknown parameter x.

Vsy € Cy,
Vsy ¢ Cy.

(20)

(Ao Aot -+ Ao 0 0 i
Uo Uy --- Uy, -H{l}; --- 0
0 mr -0 0 o0
UnO Unl e Unn 0 _Hn{l}n
0 0 {I}I 0 e 0 |
X0
x| Hd,
0
0
X Xn = . . (21)
¢! '
0
0
o:

The set of Eq. (21) is solved for the unknown parameters
x and q’)’g, then, by back-substitution into Egs. (6) and (7),
the boundary unknowns are obtained either on the
interfaces or the external boundary surfaces.

The simplified mathematical model has been rigorously
validated through numerical examples [25]. It is also
verified that, for a composite material, when the ratio of
heat conductivity between the inclusions and the matrix is
bigger than 2000, the simplified model is adequate for
evaluating the overall thermal properties of composite with
sufficient accuracy. As the lowest value of the ratio of heat
conductivity between CNT and a polymer, ever reported in
the literature, is much higher than 2000, the CNTs can be
treated, without loss of accuracy, as a heat superconductor
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in the mathematical model of the composite heat transfer
analysis.

4. The Fast Multipole Method

The size of the coefficient matrix in Eq. (21) is dominated
by sub-matrices [dok] and [Uy], k=1,...n, i=0, 1,...n.
Since these sub-matrices are unsymmetrical and fully
populated, solving Eq. (21) by an iterative solver requires
O(N?) operations. In this paper, we use the restarted
preconditioned GMRES [43] to solve the equation. The
most time-consuming aspect of an iterative method when
employed for solving a system of linear equations is the
matrix—vector product in each iteration step. Taking an
iteration vector x’ into account, the product of a row of the
coefficient matrix in Eq. (21) and the guess vector x’ can be
expressed as one of the following four sums:

N
> . o QT (22)
J=1 1

N d K}

> /F —K a(/;f v (Q)X,dr, (23)
J=1 1

N iy

> [ du@udr +9 > (24)
J=1 1 J

S, 29)

Sums (22) and (23) are related to a node located on the
external boundary and prescribed with temperature and
normal flux, respectively. Sum (24) is related to a node
located at the interface of the kth CNT with the polymer
domain, and Expression (25) to the kth uniform tempera-
ture constraint.

The computational costs for the second term in Sums
(24) and (25) are trivial, and can be ignored. However,
direct implementation of Sums (22) and (23) gives an O(N?)
algorithm. When N grows large, this algorithm leads to
rapid exhaustion of computer resources like memory, disk
space, and CPU time, which limits the number of CNTs
that can be included in an RVE. In this work, we use FMM
to reduce the complexity of these summations. The FMM
is powerful but also complicated in implementation. In the
following, we briefly list the main ideas of the FMM for
accelerating summation (22) as a similar idea can be easily
applied to Sum (23). A complete description of combina-
tion of FMM and HdBNM can be found in Ref. [35].

Instead of treating interactions with each of the distant
nodes individually, the FMM computes cell-cell interac-
tions, thus achieves an O(N) complexity algorithm.
Consider two cells C, and C,: C, contains N, nodes and
C,, contains N, nodes. The computational complexity of a
standard algorithm for the mutual interactions between the
two groups is of order O(N, x N,) (Fig. 1a), while using the

a Cy: Ny nodes

C,: N, nodes

Je”]

s, *
C Cp: Ny nodes
x“/ S,
e
/);\
C,: Nynodes Lt .
s, - .
I, -»@:/
Q : 01

Fig. 1. Interaction between two cells.

cell—cell strategy, it is reduced to O(N,+ N,) (Fig. 1b). To
conduct the cell-cell interaction computation, the funda-
mental solution in Eq. (3) is expanded in terms of solid
harmonic series:

ﬁz Z m(O;Q)Rn,m(OZSJ)

n=0 m=—n

L1
¢

77 e H(Q,s)
(26)

for | O,Q|>| O3s; |, in which O» represents the center of C,
(Fig. l¢), R,,, and S, , are solid harmonic functions
defined in Ref. [44], and ()means the complex conjugate.
Substituting (26) into (22) for summation over the nodes
included in C;,, we obtain

Ny

> [ ¢e(Qx,dr
J=1Y11

o0 n 1 - N
=33 [ S0 0@ M, 00, @D

n=0 m=—n
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in which,
Nb N

Mn,m(02) = Z Rn,m(OZSJ)x,// (28)
J=1

is called multipole moments for given m and n.
The solid harmonic function S,,,(0,0) in Eq. (27) can
be further expanded in terms of solid harmonics as [29,44]

. o - -
Sn,m(OZQ) = Z Z (_l)n Rn/,m’(ol Q)Sn+n/,m+m’(01 02)

n=0m'=—n'

(29)

for |0:02 |>2] OTQ|, where O is the center of C, (Fig.
lc). Substituting (29) into (27), we arrive at

Ny
> /F 00T

00 n 1 .
=3 3 [ G RO Ly (0D, (30)

n'=0m'=—n

where

o n N
Ln’,m/(ol) = Z Z (_l)n Sn+n/,m+m’(01 OZ)Mn,m(Qz)'

n=0 m=—n
(31)

Eq. (31) is called multipole to local translation, which
transforms the multipole moments of C, to the local
moments of C,.

In the above development, the multipole expansions are
used to separate the source and target points in the
fundamental solution and the pair of points in the solid
harmonic functions, so that the multipole moments and
local moments are related only to the cells, respectively.
Therefore, these moments can be calculated independently
and can be aggregated into ones to represent potentials of
ever lager groups of nodes. Moreover, once calculated,
they can be reused for all other cell—cell interactions.

Besides the multipole to local translation, the FMM also
uses multipole to multipole and local to local translations,
and a hierarchical decomposition of space, represented by
a tree structure, that rationally partitions the computation
domain into areas that are suitably distant from each other.
By the translation operators, the multipole and local
moments are orchestrated in the tree structure in a
recursive way. It consists of two basic steps: the upward
pass and the downward pass. During the upward pass,
multipole moments are accumulated from leaves to the
root of the tree. During the downward pass, local moments
are distributed from the root to the leaves. In practical
computation, the infinite series in the expansions and
translations are truncated after p terms. It has been found
that for p =10, these expansions and translations are
sufficiently accurate for most problems. As p is a small
constant, the computational complexity for computing
Sums (22) and (23) is proportional to N. For full details of
fast multipole HABNM refer to [35].

4.1. Accuracy validation of FMM

The accuracy of FMM is determined by the number of
terms, p, used in the multipole expansions. One of the
advantages of FMM is that it bounds the error analyti-
cally. As we can determine how many terms are required in
a multipole expansion to achieve a certain guaranteed level
of accuracy, the FMM can be arbitrarily accurate. In this
section, we will examine the accuracy of the above-
proposed method. An RVE with a sinusoidal CNT
embedded is used in this study. Fig. 2 shows the geometry
and dimensions. As there is no analytical solution existing
for the simplified model, we consider the matrix domain,
only, and impose Dirichlet boundary condition on all the
surfaces, including cavity (the outer surface of the CNT),
according to the following exact solution:

u=x 4y +z = 3yx? = 3xz7 — 3z)7, (32)

then solve the problem using Egs. (6) and (7). This set up
cannot actually check the accuracy of the simplified model
combined with FMM but the FMM, only. The simplified
mathematical model has been rigorously validated in [25].
The relative error is evaluated over all the boundary nodes
using a ‘global’ L, norm error defined as

1 I~ @ mp
v @’ —a"), (33)
1

e =
|q|max =

where |¢|nax 18 the maximum nodal value of normal flux,
the superscripts (¢) and (n) refer to the exact and numerical
solutions, respectively.

We have performed computations for a variety of
numbers of nodes uniformly distributed on the inner and
outer surfaces of the domain. We truncate all the infinite
expansions after p = 10, set the maximum number of
boundary nodes in a leaf box to be 60, and terminate the
iteration when the relative error norm is less than 107°. All
the computations in this paper, including that presented in
the next section, are performed on a desktop computer
with an Intel(R) Pentium(R) 4 CPU (1.99 GHz).

120 nm
50 nm

200 nm

Y

20 nm

Fig. 2. An RVE including a sinusoidal CNT.
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The relative errors as a function of the number of nodes
used are presented in Fig. 3. The error with the coarsest
nodes (5616 nodes) is 2.027%, while that with the finest
nodes (151,724 nodes) is 0.4076%. With an increasing
number of nodes, higher accuracy is obtained. The solution
time is plotted against the number of nodes in Fig. 4, which
clearly shows a nearly linear complexity of the developed
algorithm. The high accuracy and efficiency for this
example suggests that the proposed formulation and its
FMM implementation are correct and effective. This
example also demonstrates that the proposed method is
capable of performing large-scale computations. In the
next section, we will employ it for advanced analysis of the
CNT-based composites.

5. Thermal studies by the simplified model and FMM
5.1. Middle-scale studies

A rectangular RVE is employed with the dimensions
shown in Fig. 5. Based on the simplified mathematical
model, the CNTs are treated as cavities, which are identical
to the outer surfaces of the CNTs. Constant temperatures
are constrained at each of the cavity surfaces. The radii of
CNTs (R = 5nm) are kept constant in all the following
examples, while their length and shapes, together with the
number of CNTs and their alignments, varies for different
examples. The heat conductivity, x”_used for the polymer
(polycarbonate) is 0.37 W/m K. Uniform temperatures of
300 and 200K are imposed at the two end faces of the
RVE, respectively, and heat flux free at other four side
faces. This boundary condition set allows us to estimate
equivalent heat conductivity of the composite in the axial
direction. Using Fourier’s law, the formula for equivalent
heat conductivity can be written as

qL

=—, 34

2.5 T T T B T

20{ = .
9
c:, 1.5 1 E
o n
Q
2 10- \ ]
ko)
Q
14 l\

0.5 4 —

| |
0.01— . . .
0.0 4.0x10* 8.0x10* 1.2x10° 1.6x10°
Number of nodes

Fig. 3. Relative error for normal flux.

6x10° - .

5x10° 1 .

N
>
=
(=]
1
1

CPU time (sec.)
w
o
o

2x10*4 .
1%x10* .
| )
] e
o] o |
0.0 4.0x10* 8.0x10* 1.2x10° 1.6x10°

Number of nodes

Fig. 4. CPU time for solving system equation.

Fig. 5. Dimensions of a nanoscale RVE.

where k represents the heat conductivity, ¢ is the average
value of normal flux at the two end face, obtained by
HdBNM, L is the length of the RVE in the axial direction
and A¢ the temperature difference between the two end
faces.

Twelve RVEs containing different numbers of CNTs
with different shapes, alignments, have been considered.
These RVEs are sorted into three groups according to their
shape and alignment, and presented in Figs. 6-8. The first
group consists of RVEs including straight CNTs with
parallel alignment. The length of these CNTs is 195nm. In
the RVEs of the second group, two more vertically aligned
CNTs are added near the two end faces. The third group
includes RVEs with curved CNTs embedded. Results of
our experiments are summarized in Table 1. In the table,
the first column lists the number of the RVE, the second
column lists the volume fraction of CNT, the third column
lists the calculated effective heat conductivity, and the
fourth column lists the ratio of the effective heat
conductivity to that of the polymer. To assess the
enhancement effectiveness, we use as the criterion the ratio
of the effective heat conductivity to the volume fraction,
which is presented in the fifth column.

Results in Table 1 show that, for RVEs of group 1, as the
number of CNTs included in the RVE increases, the
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Fig. 6. RVEs including straight CNTs, alignment 1.
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Fig. 8. RVEs including curved CNTs, alignment 3.

effective heat conductivity increases, while the effectiveness
of enhancement decreases. Results for RVEs of group 2 are
quite similar. However, their enhancements are smaller
than that obtained by RVEs of group 1. It is interesting to
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Table 1
Effective heat conductivities for middle-scale RVEs
RVE CNT Effective Reinforcement  Effectiveness
volume conductivity, K/’ K/v
fraction, v (%) x (W/mK)
nH 3.136 1.646 4.5 52.49
) 6.272 3.780 10.2 40.18
3) 9.408 5.079 13.7 32.39
4) 15.68 6.114 16.5 27.85
%) 6.381 1.334 3.6 20.91
6) 11.84 2.294 6.2 19.37
™ 17.29 2.868 7.6 16.59
®) 22.74 3.138 8.5 13.80
) 6.198 7.680 21 123.9
(10) 8.796 7.155 19 81.34
(11) 8.796 7.179 19 81.62
(12) 9.010 1.941 5.2 21.54

note that the case (9) gives the highest values of both the
effectiveness of enhancement and the effective heat
conductivity, which is much higher than that obtained for
models with straight CNTs. The effective heat conductivity
is 21 times that of the polymer.

5.2. Large-scale studies

In this section, the RVE used in the previous section is
enlarged such that L =630nm, H=385nm and
W = 100 nm. Except the number and geometries of CNTs
embedded in the RVE, the rest parameters including the
boundary condition are kept the same as in the previous
section.

Eight RVEs containing different numbers of CNTs with
different shapes, alignments, have been elaborately built,
which are presented in Fig. 9. RVE (13) contains 135
identical CNTs, of which the geometry and dimensions are
the same as that in the RVEs shown in Fig. 6. RVE (14)
and (15) are built from RVE (13) by ‘“randomly”
modifying the location in y direction and orientation of
each CNT slightly, respectively. The word randomly is
quoted because the variations of location and orientation
are limited to such an extent that each CNT remains in a
local box that includes the CNT to avoid contact of the
CNTs. RVE (16) includes 45 curved CNTs of sinusoidal
shape. The wave number and amplitude of the sinusoidal
curves for the shapes of the CNTs vary from one to
another to make this RVE more realistic looking. RVE (17)
includes 45 identical CNTs of “C” shape, which are
duplicated from the CNT in RVE (9) shown in Fig. 8. RVE
(18) contains single long CNT of “C” shape, and in RVE
(19), this long CNT is duplicated two times. In RVE (20),
we deliberately build a very long and curved CNT. We
expect this RVE will give the best result of heat
conductivity.

In Table 2, we summarize the computational results for
these RVEs. As our expectation, the best results are
obtained from case (20), which gives the highest values for
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—

20

Fig. 9. Nanoscale RVEs containing various nanotubes: (13) uniformly located 135 CNTs; (14) “Randomly’ located 135 CNTs; (15) “Randomly” oriented
135 CNTs; (16) “Randomly” located 45 curved CNTs; (17) forty-five CNTs of “C”” shape; (18) single CNT of “C” shape; (19) three CNTs of “C” shape;
(20) single long and curved CNT.

Table 2

Effective heat conductivities for large-scale RVEs

RVE CNT Effective Reinforcement, Effectiveness,
volume conductivity, x/Kk” K/v
fraction, v (%) & (W/mK)

(13) 8.4 3.746 10.1 44.71

14 177 2.668 7.2 35.55

(15) 8.4 3.470 9.4 41.41

(16) 48 1.717 4.6 36.00

(17) 55 6.319 17.1 114.5

(28) 0.40 4.868 13.2 1218

(19) 1.2 11.15 30.1 929.9

(20) 0.88 11.76 31.8 1337

both the effective heat conductivity ( = 11.76 W/m K) and
the ratio x/v (= 1337). The heat conductivity obtained
from case (20) is close to that of metals. That means, with
longer CNTs, it is possible to make a CNT-based
composite with the effective heat conductivity comparable
to or higher than metals’. Case (19) gives the second
highest value of heat conductivity (= 11.15W/mK), very
close to the best one, and the third highest value for the
ratio /v (=929.9). Case (18) gives the fourth highest
value of heat conductivity (=4.868 W/mK) and the
second highest value for the ratio x/v ( = 1218). And case
(17) gives the third highest value of heat conductivity
(=6.319 W/mK) and the fourth highest value for the ratio
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k/v ( = 114.5). The common feature of these three RVEs is
that all of them contain CNTs of “C” shape. Although
they do not give the best results, considering the simplicity
of geometry, we suggest the “C” shape is the best shape of
CNTs for enhancing thermal properties of the composites.

By comparing the results for RVEs listed in Tables 1 and
2, we make the following observations:

1. The effective conductivities obtained for cases (13), (16)
and (17) are very close to those for cases (2), (9) and
(12), respectively. As RVEs (13), (16) and (17) can be
considered approximately as periodic structures with
RVEs (2), (9) and (12) being the cells of periodicity,
respectively, the proximity between the results demon-
strates that the global behavior of a periodic structure
can be characterized by a single cell of periodicity of the
structure, and thus validates the applicability of the
RVE method.

2. Numerical results obtained for cases (13)—(16) demon-
strate that the CNT distribution, orientation, and
especially, the waviness strongly affect the effective heat
conductivity, while their influences on the ratio x/v are
less strong.

3. The ratios «/v of cases (18) and (19) are nearly one order
higher that of case (17), which suggests that CNT length
is a decisive factor for the enhanced thermal property of
the composite, while the volume fraction of CNT is
much less important. The most effective way to increase
the heat conductivity of the composite is to use longer
CNTs to be embedded in the composite. The same
conclusion can be made by comparing cases (18) and
(13), where the case (18) gives higher value of
conductivity with a long CNT but extremely less volume
fraction.

5.3. Sensitive study on CNT's curvature

Micrographs of CNT composites show that the em-
bedded CNTs exhibit significant curvature within the
polymer [38,39]. In the previous section, it is shown that
the shape and curvature of the embedded CNT greatly
influence the effective heat conductivity of the CNT
composites. However, the degree of the influence has been
unclear. Sinusoidal and spiral shapes are the typically
observed curvatures of the embedded CNTs. In this
section, we examine the impact of the curvature of CNTs
on the effective thermal properties of the composites.
Dimensions of two RVEs used in this study are presented
in Figs. 10 and 11. The outer dimensions: 180 x 180 x 530
are the same for both RVEs, while the shapes of the CNTs
embedded are different. The RVE shown in Fig. 10
includes CNTs of sinusoidal shape, while the RVE in
Fig. 11 contains spiral CNTs. Dimensions of the sinusoidal
CNT and the spiral CNT are given in Figs. 10b and 11b,
respectively. Both RVEs include 27 uniformly arrayed
identical CNTs with a dislocation of 30 nm in y direction

a

180

180

Fig. 11. RVE containing spiral CNTs

between the neighboring rows. In this study, we will keep
the length of each CNT constant ( = 120 nm), while change
amplitude of the sinusoidal curve and the radius of the
spiral curve from 20 to Onm. The total number of nodes
used for each instance is 110,391. The boundary conditions
are kept the same as in previous sections, uniform
temperatures of 300 and 200 K are prescribed at the two
end faces (y = 265 and —265), respectively, while all the
rest faces are treated as flux free. Computations were
performed for five sets of dimensions for each of the CNTs,
namely, 4 or R=20, 15, 10, 5, 0. The corresponding
images of the RVEs are shown in Figs. 12 and 13.

The effective heat conduction as a function of the
amplitude for the sinusoidal CNTs and the radius for
the spiral CNTs is presented in Fig. 14. It is seen that the
curvature of CNTs indeed has a strong impact on
the overall thermal properties of the composites. For the
sinusoidal CNTs, the effective heat conductivity obtained
by the straight CNTs is 1.4 times that obtained by the
sinusoidal CNTs with amplitude being 20 nm, while for the
spiral CNTs, the RVE with straight CNTs embedded gives
2.2 times effective conductivity that obtained by the spiral
CNTs of 20 nm radii. It can be also seen that, in all cases,
the sinusoidal CNTs perform much better than the spiral
CNTs. This observation is consistent with the physical
interpretation. When the amplitude of sinusoidal curve
equals to the radius of the spiral curve, a sinusoidal CNT
spans a longer distance in the y direction than a spiral CNT
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Fig. 13. RVEs containing spiral CNTs with various radii.
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Fig. 14. Variation of effective heat conductivity with decreasing curvature
of CNTs.

of the same length, therefore, the sinusoidal CNTs bridge a
better heat conduction path which reduces the heat
conduction resistance.

6. Discussions and conclusions

This paper presents an implementation of HdBNM
combined with FMM to the heat conduction analysis in
CNT-based composite material based on multi-domain
model and a simplified mathematical model. The HABNM
is a meshless boundary-only method requiring discrete
nodes located on bounding surfaces of the domain of
interest, only. That greatly simplifies the pre-processing
and discretization tasks and makes approach extremely
useful, and more cost- and resources-effective than based
on conventional FEM/BEM models. Numerical examples
have demonstrated that the fast multipole HIBNM is an
accurate and effective algorithm and has promising

applications in large-scale analysis of CNT composites,
especially concerning the complex geometries of the CNTs.

Mathematical models presented in the paper rely on
continuum mechanics principles and do not account for
quantum effects. However, the continuum-based model
seems to be so far the only feasible one for performing
simulations of nanocomposites behavior and properties at
practical/engineering level. How to address the quantum
effects in a continuum or multi-scale model will be a
challenging task that needs to be studied in the future. At
current stage of research, the objective is to gain insight
into the thermal property of the CNT composites through
numerical simulation on RVEs of the composites that
contain a large number of randomly scattered CNTs with
various geometries, and find some new composites with
optimal configurations of CNTs.

A variety of RVEs containing different numbers of
CNTs, from small to large scales, have been studied in an
attempt to investigate the influence of CNT Ilength,
distribution, orientation and volume fraction on the overall
thermal properties of the composites. We found that all the
above factors have strong impact on the overall properties
of the composites. However, the length of the individual
CNTs is substantially decisive for enhancing the thermal
properties of the composite, while the volume (or weight)
fraction of CNT is less important. For a specific length of
CNTs, the degree of improvement for effective heat
conductivity is not proportional to the volume fraction of
CNT. With increasing the volume fraction, the effective-
ness of enhancement of the CNTs decreases.

Increasing the lengths of CNTs that embedded in a
polymer system is the most effective way to enhance the
heat conductivity of the system. However, this has received
little attention. In literatures of both numerical and
experimental studies on CNT composites, researchers often
assess the enhanced properties in terms of volume (or
weight) fraction of the CNTs, and seldom compare the
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enhancement for CNTs of different lengths. In our study,
we found that substantially higher effective heat conduc-
tivity can be attained with a small fraction of long CNTs
than with a large fraction of short CNTs. Moreover, from
the point view of practical fabrication of CNT composite,
it is easier to achieve uniform dispersion of CNTs into the
polymer with low fractions of CNT.

A critical issue that has been examined is the impact of
the shape of CNTs on the effective thermal properties of
the composites. RVEs containing CNTs with various
shapes are computed and compared. Results demonstrate
that the effective heat conductivity is strongly dependent
on the embedded CNTSs’ geometries. For a specific length,
the “C” shape is suggested to be the most effective shape
for thermal property enhancement. Future work will focus
on optimizing the dimensions of the “C” shape CNT with
some specific lengths.

The effects of the CNT curvature on the effective
conductivity were also investigated. It is found that the
CNT curvature indeed reduces the effective enhancement
when compared with straight CNTs. The reason for a
curved CNT reduces the effective enhancement is that it
decreases the spanned distance along its axial dimension.
This mechanism of reduction of enhancement is different
from that in elastostatic case [38]. In the sensitive studies on
CNT curvature, when we kept the spanned distance along
its axial dimension constant while changed the curvature
and the length of the CNT(s), results showed that the
effective heat conductivity was only slightly affected by the
waviness of the CNT [24].
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